

Polynomials Related to Generalized Fibonacci Sequence

¹MANJEET SINGH TEETH and ²SANJAY HARNE

¹Professor, Christian Eminent College, Indore (India) ²Assistant Professor, Mata Jijabai Government Girls PG College, Indore (India) Corresponding Author Email : <u>manjeetsinghteeth@gmail.com</u> http://dx.doi.org/10.22147/jusps-B/340202

Acceptance Date 15th March, 2022, Online Publication Date 27th March, 2022

Abstract

In this paper we extend the Fibonacci recurrence relation to define the sequence $\{C_n\}$ and derive some properties of this sequence. We also define the four comparison sequence $\{P_n\}$, $\{Q_n\}$, $\{R_n\}$, $\{S_n\}$. We also obtain some identities with the help of generating matrix.

Key words: Fibonacci Number, Fibonacci Sequence

Mathematics Subject Classification: 11B39

1 Introduction

Waddili, M.E.¹⁰ has extended the Fibonacci recurrence relation to define the sequence $\{K_n\}$, where, $K_n = K_{n-1} + K_{n-2} + K_{n-3}$, $n \ge 3$ (1.1) and K_n , K_1 , K_2 are given arbitrary algebraic integers.

Jaiswal, D.V.[8] has extended Fibonacci recurrence relation to define the sequence $\{Q_n\}$,

where, $Q_n = Q_{n-1} + Q_{n-2} + Q_{n-3} + Q_{n-4}$, $n \ge 4$ (1.2) and, Q_0 , Q_1 , Q_2 are given arbitrary algebraic integers.

Harne, S.⁷ has extended Fibonacci recurrence relation to define the sequence $\{D_n\}$, where,

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)

Manjeet Singh Teeth, et al., JUSPS-B Vol. 34(2), (2022).

$$D_{n} = D_{n-1} + D_{n-2} + D_{n-3} + D_{n-4} + D_{n-5}, \quad n \ge 5$$
(1.3)

and, D_0 , D_1 , D_2 are given arbitrary algebraic integers.

In this paper we shall further extend the Fibonacci recurrence relation³⁻⁶ to define the sequence $\{C_n\}$ and shall discuss some properties of this sequence. We shall also consider the four comparison sequence $\{P_n\}$, $\{Q_n\}$, $\{R_n\}$, $\{S_n\}$.

2 The Generalized Sequence $\{C_n\}$:

We consider the sequence, $\{C_n\} = C_0, C_1, C_2, C_3, \dots, C_n$

where, C_0 , C_1 , C_2 , C_3 , C_4 , C_5 are arbitrary algebraic integers all of which are not zero and $C_n = C_{n-1} + C_{n-2} + C_{n-3} + C_{n-4} + C_{n-5} + C_{n-6}, n \ge 6$ (2.1)

We also consider the sequence $\{P_n\} = P_0, P_1, P_2, ..., P_n$

where,
$$P_0 = C_3 - C_2 - C_1 - C_0$$
, $P_1 = C_4 - C_3 - C_2 - C_1$, $P_2 = C_5 - C_4 - C_3 - C_2$,
 $P_3 = C_6 - C_5 - C_4 - C_3$, $P_4 = C_7 - C_6 - C_5 - C_4$
(2.2)

with,
$$P_n = C_{n-1} + C_{n-2} + C_{n-3} + C_{n-4} + C_{n-5}, \quad n \ge 5$$
 (2.3)

and
$$\{Q_n\} = Q_0, Q_1, Q_2, ..., Q_n$$
, where, $Q_0 = C_4 - C_3 - C_2 - C_1 - C_0$,
 $Q_1 = C_5 - C_4 - C_3 - C_2 - C_1$, $Q_2 = C_6 - C_5 - C_4 - C_3 - C_2$, (2.4)

with,
$$Q_n = C_{n-1} + C_{n-2} + C_{n-3} + C_{n-4}$$
, (2.5)

and
$$\{R_n\} = R_0, R_1, R_2, ..., R_n$$

where, $R_0 = C_5 - C_4 - C_3 - C_2 - C_1 - C_0$, $R_1 = C_6 - C_5 - C_4 - C_3 - C_2 - C_1$
 $R_2 = C_7 - C_6 - C_5 - C_4 - C_3 - C_2$, $R_3 = C_8 - C_7 - C_6 - C_5 - C_4 - C_3$
 $R_4 = C_9 - C_8 - C_7 - C_6 - C_5 - C_4$
with, $R_n = C_{n-1} + C_{n-2} + C_{n-3}$, $n \ge 3$
(2.6)

and
$$\{S_n\} = S_0, S_1, S_2, ..., S_n$$
 (2.7)

where, $S_0 = C_6 - C_5 - C_4 - C_3 - C_2 - C_1 - C_0$, $S_1 = C_7 - C_6 - C_5 - C_4 - C_3 - C_2 - C_1$ $S_2 = C_8 - C_7 - C_6 - C_5 - C_4 - C_2 - C_3$, $S_2 = C_8 - C_8 - C_7 - C_6 - C_5 - C_4 - C_3$

$$S_{4} = C_{10} - C_{9} - C_{8} - C_{7} - C_{6} - C_{5} - C_{4}$$
(2.8)

with,
$$S_n = C_{n-1} + C_{n-2}, \qquad n \ge 2$$
 (2.9)

From (2.1) and (2.3) we have for $n \ge 11$

$$\begin{split} \mathbf{P}_{n} &= \quad \mathbf{C}_{n-2} + \mathbf{C}_{n-3} + \mathbf{C}_{n-4} + \mathbf{C}_{n-5} + \mathbf{C}_{n-6} + \mathbf{C}_{n-7} + \mathbf{C}_{n-3} + \mathbf{C}_{n-4} + \mathbf{C}_{n-5} + \mathbf{C}_{n-6} + \mathbf{C}_{n-7} + \mathbf{C}_{n-8} \\ &+ \mathbf{C}_{n-4} + \mathbf{C}_{n-5} + \mathbf{C}_{n-6} + \mathbf{C}_{n-7} + \mathbf{C}_{n-8} + \mathbf{C}_{n-9} + \mathbf{C}_{n-5} + \mathbf{C}_{n-6} + \mathbf{C}_{n-7} + \mathbf{C}_{n-8} + \mathbf{C}_{n-9} + \mathbf{C}_{n-10} \\ &+ \mathbf{C}_{n-6} + \mathbf{C}_{n-7} + \mathbf{C}_{n-8} + \mathbf{C}_{n-9} + \mathbf{C}_{n-10} + \mathbf{C}_{n-11} \\ \mathbf{P}_{n} &= \mathbf{P}_{n-1} + \mathbf{P}_{n-2} + \mathbf{P}_{n-3} + \mathbf{P}_{n-4} + \mathbf{P}_{n-5} + \mathbf{P}_{n-6} \end{split}$$

Now, from equation (2.2) and (2.3),

$$P_{10} = (C_8 + C_7 + C_6 + C_5 + C_4) + (C_7 + C_6 + C_5 + C_4 + C_3) + (C_6 + C_5 + C_4 + C_3 + C_2) + (C_5 + C_4 + C_3 + C_2 + C_1) + (C_4 + C_3 + C_2 + C_1 + C_0) + (C_7 - C_6 - C_5 - C_4)$$

$$P_{10} = P_9 + P_8 + P_7 + P_6 + P_5 + P_4$$
Similarly,
$$P_9 = P_8 + P_7 + P_6 + P_5 + P_4 + P_3, \qquad P_8 = P_7 + P_6 + P_5 + P_4 + P_3 + P_2$$

$$P_7 = P_6 + P_5 + P_4 + P_3 + P_2 + P_1$$

Hence, we have for $n \ge 6$ $P_n = P_{n-1} + P_{n-2} + P_{n-3} + P_{n-4} + P_{n-5} + P_{n-6}$ (2.10) Proceeding on similar lines, it can be shown that for $n \ge 6$.

$$\begin{aligned} Q_{n} &= & C_{n-2} + C_{n-3} + C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-3} + C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-8} \\ &+ & C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-8} + C_{n-9} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-8} + C_{n-9} + C_{n-10} \\ Q_{n} &= & Q_{n-1} + Q_{n-2} + Q_{n-3} + Q_{n-4} + Q_{n-5} + Q_{n-6} \quad \text{for } n \ge 6 \end{aligned}$$

$$(2.11)$$

Proceeding on similar lines it can be shown that for $n \ge 6$

$$\begin{split} R_{n} &= \quad C_{n-2} + C_{n-3} + C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-3} + C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-8} \\ &+ C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-8} + C_{n-9} \\ R_{n} &= \quad R_{n-1} + R_{n-2} + R_{n-3} + R_{n-4} + R_{n-5} + R_{n-6} \quad \text{for } n \geq 6 \end{split}$$
(2.12)

Proceeding on similar lines it can be shown that for $n \ge 6$

$$S_{n} = C_{n-2} + C_{n-3} + C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-3} + C_{n-4} + C_{n-5} + C_{n-6} + C_{n-7} + C_{n-8}$$

$$S_{n} = S_{n-1} + S_{n-2} + S_{n-3} + S_{n-4} + S_{n-5} + S_{n-6} \text{ for } n \ge 6$$
(2.13)

Thus, the four sequences $\{P_n\}$, $\{Q_n\}$, $\{R_n\}$ and $\{S_n\}$ are special cases of sequence $\{C_n\}$ and all obtained by taking different initial values [1,2,9].

On taking, $C_0 = C_1 = C_2 = 0, C_3 = C_4 = 1, C_5 = 2, C_0 = C_1 = 0, C2 = 1, C_3 = 0, C_4 = 1, C_5 = 2, C_0 = 0, C_1 = 1, C_2 = C_3 = 0, C_4 = 1, C_5 = 2, C_0 = 1, C_1 = C_2 = C_3 = 0, C_4 = 1, C_5 = 2, C_0 = C_2 = C_2 = C_3 = 0, C_4 = 1, C_5 = 2$ (2.14) $0,0,0,1,1,2,4,8,16,32,63,...J_n,...$ $0,1,0,0,1,2,4,8,16,31,62,...K_n,...$

1,0,0,0,1,2,4,7,14,28,56,...M_n,...

0,0,0,0,1,2,3,6,12,24,48,...N_n,...

Here, we find that

$$\begin{split} & K_n = J_{n-1} + J_{n-2} + J_{n-3} + J_{n-4} + J_{n-5,} & L_n = J_{n-1} + J_{n-2} + J_{n-3} + J_{n-4} \\ & M_n = J_{n-1} + J_{n-2} + J_{n-3,} & N_n = J_{n-1} + J_{n-2} \end{split}$$

Hence, we say that $\{J_n\}$ is C_n type sequence, while $\{K_n\}$ is P_n type sequence, and $\{L_n\}$ is Q_n

type sequence, while $\{M_n\}$ is R_n type sequence, and $\{N_n\}$ is S_n type sequence.

3 Linear Sums And Some Properties We have derived simple properties of the sequence $\{C_n\}$, $\{P_n\}$, $\{Q_n\}$, $\{R_n\}$, $\{S_n\}$ expressing each of the terms $C_6, C_7, C_8, \ldots, C_{n+5}$ as the sum of its six preceding terms as given in (2.1) adding both sides we obtained on simplification –

$$\sum_{i=0}^{n} C_{i} = 1/5 \{ C_{n+5} - C_{n+3} - 2C_{n+2} - 3C_{n+1} + C_{n} - (C_{5} - C_{3} - 2C_{2} - 3C_{1} - 4C_{0}) \}$$
(3.1)

On using (2.1), (2.2), (2.4), (2.6) and (2.8), we get

$$\sum_{i=0}^{n} C_{6i} = \sum_{i=0}^{6n-1} C_{i} + C_{0}, \sum_{i=0}^{n} C_{6i+2} = \sum_{i=0}^{6n+1} C_{i} + P_{0}, \sum_{i=0}^{n} C_{6i+3} = \sum_{i=0}^{6n+2} C_{i} + Q_{0}$$

$$\sum_{i=0}^{n} C_{6i+4} = \sum_{i=0}^{6n+3} C_{i} + R_{0}, \sum_{i=0}^{n} C_{6i+5} = \sum_{i=0}^{6n+4} C_{i} + S_{0}, \sum_{i=0}^{n} C_{6i+6} = \sum_{i=0}^{6n+5} C_{i} + (S_{1} - C_{0})$$

$$\sum_{i=0}^{n} C_{6i+5} = \sum_{i=0}^{6n+4} C_{i} + (R_{1} - C_{0}), \sum_{i=0}^{n} C_{6i+4} = \sum_{i=0}^{6n+3} C_{i} + (Q_{-1} - C_{0}), \sum_{i=0}^{n} C_{6i+3} =$$

$$\sum_{i=0}^{6n+2} C_{i} + (P_{1} - C_{0})$$

4 Property of Sequence $\{J_n\}$

Theorem: For the sequence $\{J_n\}$ we have,

Proof : Consider the determinant -

$\Delta =$	1	1	1	1	1	1		2	2	2	2	2	2
	1	0	0	0	0	0		1	1	1	1	1	1
	0	1	0	0	0	0	A ²	1	0	0	0	0	0
	0	0	1	0	0	0	$\Delta =$	0	1	0	0	0	0
	0	0	0	1	0	0	,	0	0	1	0	0	0
	0	0	0	0	1	0		0	0	0	1	0	0

Now, by mathematical induction,

$$\Delta^{n} = \left(\begin{array}{cccccccccc} J_{n+1} & K_{n+1} & L_{n+1} & M_{n+1} & N_{n+1} & J_{n} \\ J_{n} & K_{n} & L_{n} & M_{n} & N_{n} & J_{n-1} \\ J_{n-1} & K_{n-1} & L_{n-1} & M_{n-1} & N_{n-1} & J_{n-2} \\ J_{n-2} & K_{n-2} & L_{n-2} & M_{n-2} & N_{n-2} & J_{n-3} \\ J_{n-3} & K_{n-3} & L_{n-3} & M_{n-3} & N_{n-3} & J_{n-4} \\ J_{n-4} & K_{n-4} & L_{n-4} & M_{n-4} & N_{n-4} & J_{n-5} \end{array} \right)$$

Now, writing $N_{n+1} = J_n + J_{n-1}$ the R.H.S. can be written as the sum of two determinants, one of which is zero, Therefore,

$$\Delta^{n} = \begin{bmatrix} J_{n+1} & K_{n+1} & L_{n+1} & M_{n+1} & J_{n-1} & J_{n} \\ J_{n} & K_{n} & L_{n} & M_{n} & J_{n-2} & J_{n-1} \\ J_{n-1} & K_{n-1} & L_{n-1} & M_{n-1} & J_{n-3} & J_{n-2} \\ J_{n-2} & K_{n-2} & L_{n-2} & M_{n-2} & J_{n-4} & J_{n-3} \\ J_{n-3} & K_{n-3} & L_{n-3} & M_{n-3} & J_{n-5} & J_{n-4} \\ J_{n-4} & K_{n-4} & L_{n-4} & M_{n-4} & J_{n-6} & J_{n-5} \end{bmatrix}$$

Now, writing $M_{n+1} = J_n + J_{n-1} + J_{n-2}$, the R.H.S. can be written as the sum of three determinants, two of which are zero. Therefore,

$$\Delta^{n} = \begin{bmatrix} J_{n+1} & K_{n+1} & L_{n+1} & J_{n-2} & J_{n-1} & J_{n} \\ J_{n} & K_{n} & L_{n} & J_{n-3} & J_{n-2} & J_{n-1} \\ J_{n-1} & K_{n-1} & L_{n-1} & J_{n-4} & J_{n-3} & J_{n-2} \\ J_{n-2} & K_{n-2} & L_{n-2} & J_{n-5} & J_{n-4} & J_{n-3} \\ J_{n-3} & K_{n-3} & L_{n-3} & J_{n-6} & J_{n-5} & J_{n-4} \\ J_{n-4} & K_{n-4} & L_{n-4} & J_{n-7} & J_{n-6} & J_{n-5} \end{bmatrix}$$

Now, writing $L_{n+1} = J_n + J_{n-1} + J_{n-2} + J_{n-3}$, the R.H.S. can be written as the sum of four determinants, three of which are zero. Therefore,

$$\Delta^{n} = \begin{bmatrix} J_{n+1} & K_{n+1} & J_{n-3} & J_{n-2} & J_{n-1} & J_{n} \\ J_{n} & K_{n} & J_{n-4} & J_{n-3} & J_{n-2} & J_{n-1} \\ J_{n-1} & K_{n-1} & J_{n-5} & J_{n-4} & J_{n-3} & J_{n-2} \\ J_{n-2} & K_{n-2} & J_{n-6} & J_{n-5} & J_{n-4} & J_{n-3} \\ J_{n-3} & K_{n-3} & J_{n-7} & J_{n-6} & J_{n-5} & J_{n-4} \\ J_{n-4} & K_{n-4} & J_{n-8} & J_{n-7} & J_{n-6} & J_{n-5} \end{bmatrix}$$

Now, writing $K_{n+1} = J_n + J_{n-1} + J_{n-2} + J_{n-3} + J_{n-4}$ the R.H.S. can be written as the sum of five determinants, four of which are zero. Therefore,

$$\Delta^{n} = \begin{bmatrix} J_{n+1} & J_{n-4} & J_{n-3} & J_{n-2} & J_{n-1} & J_{n} \\ J_{n} & J_{n-5} & J_{n-4} & J_{n-3} & J_{n-2} & J_{n-1} \\ J_{n-1} & J_{n-6} & J_{n-5} & J_{n-4} & J_{n-3} & J_{n-2} \\ J_{n-2} & J_{n-7} & J_{n-6} & J_{n-5} & J_{n-4} & J_{n-3} \\ J_{n-3} & J_{n-8} & J_{n-7} & J_{n-6} & J_{n-5} & J_{n-4} \\ J_{n-4} & J_{n-9} & J_{n-8} & J_{n-7} & J_{n-6} & J_{n-5} \end{bmatrix}$$

On arranging, we get

$$\Delta^{n} = \begin{bmatrix} J_{n+1} & J_{n} & J_{n-1} & J_{n-2} & J_{n-3} & J_{n-4} \\ J_{n} & J_{n-1} & J_{n-2} & J_{n-3} & J_{n-4} & J_{n-5} \\ J_{n-1} & J_{n-2} & J_{n-3} & J_{n-4} & J_{n-5} & J_{n-6} \\ J_{n-2} & J_{n-3} & J_{n-4} & J_{n-5} & J_{n-6} & J_{n-7} \\ J_{n-3} & J_{n-4} & J_{n-5} & J_{n-6} & J_{n-7} & J_{n-8} \\ J_{n-4} & J_{n-5} & J_{n-6} & J_{n-7} & J_{n-8} & J_{n-9} \end{bmatrix}$$

Putting, n-9 = m or n = m+9 and substituting all the Δ 's, we obtain,

$$(-1)^{m+9} = \begin{bmatrix} J_{m+10} & J_{m+9} & J_{m+8} & J_{m+7} & J_{m+6} & J_{m+5} \\ J_{m+9} & J_{m+8} & J_{m+7} & J_{m+6} & J_{m+5} & J_{m+4} \\ J_{m+8} & J_{m+7} & J_{m+6} & J_{m+5} & J_{m+4} & J_{m+3} \\ J_{m+7} & J_{m+6} & J_{m+5} & J_{m+4} & J_{m+3} & J_{m+2} \\ J_{m+6} & J_{m+5} & J_{m+4} & J_{m+3} & J_{m+2} & J_{m+1} \\ J_{m+5} & J_{m+4} & J_{m+3} & J_{m+2} & J_{m+1} & J_{m} \end{bmatrix}$$

Rearranging the determinant and replace m by n we get the required result (4.1).

5 Generating Matrix $\{C_n\}$:

Now, we obtain some identities with the help of generating matrix, we consider the matrix,

$$[T] = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{vmatrix}$$
(5.1)

By mathematical induction we can show that -

$$[T]^{n} = \begin{vmatrix} J_{n+1} & K_{n+1} & L_{n+1} & M_{n+1} & N_{n+1} & J_{n} \\ J_{n} & K_{n} & L_{n} & M_{n} & N_{n} & J_{n-1} \\ J_{n-1} & K_{n-1} & L_{n-1} & M_{n-1} & N_{n-1} & J_{n-2} \\ J_{n-2} & K_{n-2} & L_{n-2} & M_{n-2} & N_{n-2} & J_{n-3} \\ J_{n-3} & K_{n-3} & L_{n-3} & M_{n-3} & N_{n-3} & J_{n-4} \\ J_{n-4} & K_{n-4} & L_{n-4} & M_{n-4} & N_{n-4} & J_{n-5} \end{vmatrix} \quad \text{where, } n \ge 5$$
(5.2)

 $[C_{n}, C_{n-1}, C_{n-2}, C_{n-3}, C_{n-4}, C_{n-5}] = [T]^{n-5} [C_{5}, C_{4}, C_{3}, C_{2}, C_{1}, C_{0}]$ (5.3) On using (5.2) and (5.3), we get –

$$\begin{bmatrix} C_{n+P} \\ C_{n+P-1} \\ C_{n+P-2} \\ C_{n+P-3} \\ C_{n+P-4} \\ C_{n+P-5} \end{bmatrix} = \begin{bmatrix} J_{n+1} & K_{n+1} & L_{n+1} & M_{n+1} & N_{n+1} & J_n \\ J_n & K_n & L_n & M_n & N_n & J_{n-1} \\ J_{n-1} & K_{n-1} & L_{n-1} & M_{n-1} & N_{n-1} & J_{n-2} \\ J_{n-2} & K_{n-2} & L_{n-2} & M_{n-2} & N_{n-2} & J_{n-3} \\ J_{n-3} & K_{n-3} & L_{n-3} & M_{n-3} & N_{n-3} & J_{n-4} \\ J_{n-4} & K_{n-4} & L_{n-4} & M_{n-4} & N_{n-4} & J_{n-5} \end{bmatrix} \begin{bmatrix} C_n \\ C_{n-1} \\ C_{n-2} \\ C_{n-3} \\ C_{n-4} \\ C_{n-5} \end{bmatrix}$$

From this we obtain -

$$C_{n+P} = J_{P+1}D_n + K_{P+1}D_{n-1} + L_{P+1}D_{n-2} + M_{P+1}D_{n-3} + N_{P+1}D_{n-4} + J_nD_{n-5}$$
(5.4)

Let us now consider the matrix [W] which is transpose of the matrix [T] in,

$$[W] = [T]' = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{vmatrix}$$
 It can be shown that the sequence,

$$C_4, P_5, Q_5, R_5, S_5, C_5, ..., C_{n-1}, P_n, Q_n R_n, S_n, C_n$$
 (5.5)
It is generated by matrix [W]

_

$$[C_n, P_n, Q_n, R_n, S_n, C_{n-1}] = [W]^{n-5} [C_5, P_5, Q_5, R_5, S_5, C_4], \ n \ge 5$$
(5.6)

On using (5.5) and (5.6), we get $[C_{n+P}, P_{n+P}, Q_{n+P}, R_{n+P}, S_{n+P}, C_{n+P-1}]$ = $\lceil W \rceil^{n+P-5} \lceil C \mid P \mid O \mid R \mid S \mid C \mid 1 = n > 5$

$$= [W]^{n+P-5} [C_5, P_5, Q_5, R_5, S_5, C_4], \quad n \ge 3$$
$$= [W]^{P} [C_n, P_n, Q_n, R_n, S_n, C_{n-1}]$$

$$\begin{split} C_{n+P} &= J_{P+1}C_n + J_PP_n + J_{P-1}Q_n + J_{P-2}R_n + J_{P-3}S_n + J_{P-4}C_{n-1} \\ P_{n+P} &= K_{P+1}C_n + K_PP_n + K_{P-1}Q_n + K_{P-2}R_n + K_{P-3}S_n + K_{P-4}C_{n-1} \\ Q_{n+P} &= L_{P+1}C_n + L_PP_n + L_{P-1}Q_n + L_{P-2}R_n + L_{P-3}S_n + L_{P-4}C_{n-1} \\ R_{n+P} &= M_{P+1}C_n + M_PP_n + M_{P-1}Q_n + M_{P-2}R_n + M_{P-3}S_n + M_{P-4}C_{n-1} \\ S_{n+P} &= N_{P+1}C_n + N_PP_n + N_{P-1}Q_n + N_{P-2}R_n + N_{P-3}S_n + N_{P-4}C_{n-1} \end{split}$$

Conclusion and its application

There are many known identities for Fibonacci recursion relation. We define the sequence $\{C_n\}$ and its four comparison sequence $\{P_n\}$, $\{Q_n\}$, $\{R_n\}$, $\{S_n\}$. We derive linear sum and properties of comparison sequence. We also derive generating matrix for $\{C_n\}$.

Acknowledgement

The authors would like to thank the referee for their very helpful and detailed comments.

Scope of the future work

More than four comparison sequence can be defined and new relationship have been derived.

Refrences:

- 1. Atanassov, K.T., "An arithmetic function and some of its applications", Bulletin of Number Theory and Related Topics, Vol. 9, No.1, 18-27 (1985).
- 2. Atanassov, K.T., Atanassov, L. and Sasselov, D., "A new perspective to the generalization of the Fibonacci sequence", The Fibonacci Quarterly, Vol. 23, No.1, 21-28 (1985).
- 3. Georghiou, C., "On some second order linear recurrence", The Fibonacci Quarterly, Vol. 27, No. 2, 10-15 (1989).
- 4. Georgiev, P., Atanassov, K.T., "On one generalization of the Fibonacci Sequence", Part III. Some relations with fixed initial values. Bulletin of Number Theory and Related Topics, Vol. *16*, 83-92 (1992).
- Georgiev P., Atanassov, K.T., "On one generalization of the Fibonacci Sequence", Part II. Some relations with arbitrary initial values", Bulletin of Number Theory and Related Topics, Vol. 16, 75-82 (1995).
- 6. Georgiev, P., Atanassov, K.T., "On one generalization of the Fibonacci sequence". Part V. Some examples. Notes on Number Theory and Discrete Mathematics, Vol. 2, No.4, 8-13 (1996).
- Harne, S. and Parihar, C.L., "Generalized Fibonacci Sequence", Ganit Sandesh (India), Vol. 8, No. 2, 75-80 (1994).
- Jaiswal, D.V., "On a generalized Fibonacci Sequence", Labdev Journal of Science and Technology, Vol. 7, No. 2, 67-71 (1969).
- 9. Thomas K., "A family of sums of Gibonacci polynomial products of order 4 revisited" Vol. *59*, No. 3, 225-231 (2021).
- 10. Waddill, M.E. and Lovis, S., "Another generalized Fibonacci Sequence", The Fibonacci Quarterly, Vol. *5*, No. 3, 209-222 (1967).