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Abstract

In this paper we extend the Fibonacci recurrence relation to define the sequence {Cn} and
derive some properties of this sequence. We also define the four comparison sequence {Pn}, {Qn},
{Rn}, {Sn}. We also obtain some identities with the help of generating matrix.
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1 Introduction

Waddili, M.E.10 has extended the Fibonacci recurrence relation to define the sequence {Kn},
where, Kn = Kn-1 + Kn-2 + Kn-3,   n > 3                                      (1.1)
and K0, K1, K2 are given arbitrary algebraic integers.

Jaiswal, D.V.[8] has extended Fibonacci recurrence relation to define the sequence {Qn},
where, Qn = Qn-1 + Qn-2 + Qn-3 + Qn-4,   n > 4   (1.2)
and, Q0, Q1, Q2 are given arbitrary algebraic integers.

Harne, S.7 has extended Fibonacci recurrence relation to define the sequence {Dn}, where,
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Dn = Dn-1 + Dn-2 + Dn-3 + Dn-4 + Dn-5,   n > 5                                        (1.3)

and, D0, D1, D2 are given arbitrary algebraic integers.

In this paper we shall further extend the Fibonacci recurrence relation3-6 to define the sequence
{Cn} and shall discuss some properties of this sequence. We shall also consider the four comparison
sequence {Pn}, {Qn}, {Rn}, {Sn}.

2 The Generalized Sequence {Cn} :

We consider the sequence, {Cn} = C0, C1, C2, C3, …, Cn

where, C0, C1, C2, C3, C4, C5 are arbitrary algebraic integers all of which are not zero and
Cn = Cn-1 + Cn-2 + Cn-3 + Cn-4 + Cn-5 + Cn-6,   n > 6  (2.1)

We also consider the sequence {Pn} = P0, P1, P2, …, Pn

where,  P0 = C3 – C2 – C1 – C0, P1 = C4 – C3 – C2 – C1, P2 = C5 – C4 – C3 – C2,
P3 = C6 – C5 – C4 – C3, P4 = C7 – C6 – C5 – C4                 (2.2)

with, Pn = Cn-1 + Cn-2 + Cn-3 + Cn-4 + Cn-5,      n > 5                            (2.3)

and {Qn} = Q0, Q1, Q2, …, Qn,                  where, Q0 = C4 – C3 – C2 – C1 – C0,
Q1 = C5 – C4 – C3 – C2 – C1, Q2 = C6 – C5 – C4 – C3 – C2,  (2.4)

with, Qn = Cn-1 + Cn-2 + Cn-3 + Cn-4,    (2.5)

and { Rn} = R0, R1, R2, …, Rn

where, R0 = C5 – C4 – C3 – C2 – C1 – C0,   R1 = C 6 – C 5 – C 4 – C 3 – C 2 – C 1

R2 = C7 – C6 – C5 – C4 – C3 – C2,   R3 = C8 – C7 – C6 – C5 – C4 – C3

R4 = C9 – C8 – C7 – C6 – C5 – C4

with, Rn = Cn-1 + Cn-2 + Cn-3,   n > 3                 (2.6)
and {Sn} = S0, S1, S2, …, Sn                                                                                                                      (2.7)
where, S0 = C6 - C5 – C4 – C3 – C2 – C1 – C0,   S1 = C 7 - C 6 – C 5 – C 4 – C 3 – C 2 – C 1

  S2 = C8 - C7 – C6 – C5 – C4 – C3 – C2,   S3 = C9 - C8 – C7 – C6 – C5 – C4 – C3

  S4 = C10 - C9 – C8 – C7 – C6 – C5 – C4  (2.8)
with,   Sn = Cn-1 + Cn-2,   n > 2                           (2.9)
From (2.1) and (2.3) we have for n > 11

Pn = Cn-2 + Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7+ Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7 + Cn-8

+ Cn-4 + Cn-5 + Cn-6 + Cn-7 + Cn-8 + Cn-9+ Cn-5 + Cn-6 + Cn-7 + Cn-8 + Cn-9 + Cn-10

+ Cn-6 + Cn-7 + Cn-8 + Cn-9 + Cn-10 + Cn-11

Pn = Pn-1 + Pn-2 + Pn-3 + Pn-4 + Pn-5 + Pn-6
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Now, from equation (2.2) and (2.3),
P10 = (C8 + C7 + C6 + C5 + C4) + (C7 + C6 + C5 + C4 + C3)+ (C6 + C5 + C4 + C3 +   C2) +

(C5 + C4 + C3 + C2 + C1)+ (C4 + C3 + C2 + C1 + C0) + (C7 - C6 - C5 - C4)
P10 = P9 + P8 + P7 + P6 + P5 + P4

Similarly, P9 = P8 + P7 + P6 + P5 + P4 + P3, P8 = P7 + P6 + P5 + P4 + P3 + P2

P7 = P6 + P5 + P4 + P3 + P2 + P1

Hence, we have for n > 6 Pn = Pn-1 + Pn-2 + Pn-3 + Pn-4 + Pn-5 + Pn-6  (2.10)
Proceeding on similar lines, it can be shown that for n > 6.
Qn = Cn-2 + Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7+ Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7 + Cn-8

+ Cn-4 + Cn-5 + Cn-6 + Cn-7 + Cn-8 + Cn-9+ Cn-5 + Cn-6 + Cn-7 + Cn-8 + Cn-9 + Cn-10

Qn = Qn-1 + Qn-2 + Qn-3 + Qn-4 + Qn-5 + Qn-6   for n > 6                           (2.11)
Proceeding on similar lines it can be shown that for n > 6
Rn = Cn-2 + Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7+ Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7 + Cn-8

+ Cn-4 + Cn-5 + Cn-6 + Cn-7 + Cn-8 + Cn-9

Rn = Rn-1 + Rn-2 + Rn-3 + Rn-4 + Rn-5 + Rn-6   for n > 6   (2.12)
Proceeding on similar lines it can be shown that for n > 6
Sn = Cn-2 + Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7+ Cn-3 + Cn-4 + Cn-5 + Cn-6 + Cn-7 + Cn-8

Sn = Sn-1 + Sn-2 + Sn-3 + Sn-4 + Sn-5 + Sn-6   for n > 6                        (2.13)

Thus, the four sequences {Pn}, {Qn}, {Rn} and {Sn} are special cases of sequence {Cn} and
all obtained by taking different initial values [1,2,9].

On taking, C0 = C1 = C2 = 0, C3 = C4 = 1, C5 = 2,C0 = C1 = 0, C2 = 1,  C3 = 0, C4 = 1, C5

= 2,C0 = 0, C1 = 1, C2 = C3 = 0, C4 = 1, C5 = 2,C0 = 1, C1 = C2 = C3 = 0, C4 = 1, C5 = 2, C0 = C2 = C2

= C3 = 0, C4 =1, C5 = 2                                                        (2.14)
0,0,0,1,1,2,4,8,16,32,63,…Jn,…
0,0,1,0,1,2,4,8,16,31,62,…Kn,…
0,1,0,0,1,2,4,8,15,30,59,…Ln,…
1,0,0,0,1,2,4,7,14,28,56,…Mn,…
0,0,0,0,1,2,3,6,12,24,48,…Nn,…

Here, we find that
Kn = Jn-1 + Jn-2 + Jn-3 + Jn-4 + Jn-5, Ln = Jn-1 + Jn-2 + Jn-3 + Jn-4

Mn = Jn-1 + Jn-2 + Jn-3, Nn = Jn-1 + Jn-2

Hence, we say that {Jn} is Cn type sequence, while {Kn} is Pn type sequence, and {Ln} is Qn



type sequence, while {Mn} is Rn type sequence, and {Nn} is Sn type sequence.

3 Linear Sums And Some Properties We have derived simple properties of the sequence {Cn},
{Pn}, {Qn}, {Rn}, {Sn} expressing each of the terms C6, C7, C8, …, Cn+5 as the sum of its six preceding
terms as given in (2.1) adding both sides we obtained on simplification –




n

0i
Ci = 1/5 {Cn+5 – Cn+3 – 2Cn+2 – 3Cn+1 + Cn

– (C5 – C3 – 2C2 – 3C1 – 4C0) }   (3.1)

On using (2.1), (2.2), (2.4), (2.6) and (2.8), we get




n

0i
C6i = 





1n6

0i
Ci + C0, 



n

0i
C6i+2 = 





1n6

0i
Ci + P0, 



n

0i
C6i+3 = 





2n6

0i
Ci + Q0




n

0i
C6i+4 = 





3n6

0i
Ci + R0,



n

0i
C6i+5 = 





4n6

0i
Ci + S0,  



n

0i
C6i+6 = 





5n6

0i
Ci + (S1 – C0)




n

0i
C6i+5 = 





4n6

0i
Ci + (R1 – C0),



n

0i
C6i+4 = 





3n6

0i
Ci + (Q1 - C0), 



n

0i
C6i+3 =






2n6

0i
Ci + (P1 - C0)

4 Property of Sequence {Jn}

Theorem: For the sequence {Jn} we have,

)1( 

JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ

  

10n9n8n7n6n5n

9n8n7n6n5n4n

8n7n6n5n4n3n

7n6n5n4n3n2n

6n5n4n3n2n1n

5n4n3n2n1nn















n+1  (4.1)
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Proof : Consider the determinant –

 

010000
001000
000100
000010
000001
111111

  
  ,    

 

001000
000100
000010
000001
111111
222222

  2 

Now, by mathematical induction,

n =  
 

JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ

  

5n4n4n4n4n4n

4n3n3n3n3n3n

3n2n2n2n2n2n

2n1n1n1n1n1n

1nnnnnn

n1n1n1n1n1n













Now, writing Nn+1 = Jn + Jn-1 the R.H.S. can be written as the sum of two determinants, one of which
is zero, Therefore,

n =  
 

JJMLKJ
JJMLKJ
JJMLKJ
JJMLKJ
JJMLKJ
JJMLKJ

  

5n6n4n4n4n4n

4n5n3n3n3n3n

3n4n2n2n2n2n

2n3n1n1n1n1n

1n2nnnnn

n1n1n1n1n1n













Now, writing Mn+1 = Jn + Jn-1 + Jn-2, the R.H.S. can be written as the sum of three determinants, two
of which are zero. Therefore,

n =  
 

JJJLKJ
JJJLKJ
JJJLKJ
JJJLKJ
JJJLKJ
JJJLKJ

  

5n6n7n4n4n4n

4n5n6n3n3n3n

3n4n5n2n2n2n

2n3n4n1n1n1n

1n2n3nnnn

n1n2n1n1n1n
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Now, writing Ln+1 = Jn + Jn-1 + Jn-2 + Jn-3, the R.H.S. can be written as the sum of four determinants,
three of which are zero. Therefore,

n =  
 

JJJJKJ
JJJJKJ
JJJJKJ
JJJJKJ
JJJJKJ
JJJJKJ

  

5n6n7n8n4n4n

4n5n6n7n3n3n

3n4n5n6n2n2n

2n3n4n5n1n1n

1n2n3n4nnn

n1n2n3n1n1n













Now, writing Kn+1 = Jn + Jn-1 + Jn-2 + Jn-3 + Jn-4 the R.H.S. can be written as the sum of five determinants,
four of which are zero. Therefore,

n =  
 

JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ

  

5n6n7n8n9n4n

4n5n6n7n8n3n

3n4n5n6n7n2n

2n3n4n5n6n1n

1n2n3n4n5nn

n1n2n3n4n1n













On arranging, we get

n =  
 

JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ

  

9n8n7n6n5n4n

8n7n6n5n4n3n

7n6n5n4n3n2n

6n5n4n3n2n1n

5n4n3n2n1nn

4n3n2n1nn1n













Putting, n-9 = m or n = m+9 and substituting all the ’s, we obtain,

(-1)m+9 =  
 

JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ

  

m1m2m3m4m5m

1m2m3m4m5m6m

2m3m4m5m6m7m

3m4m5m6m7m8m

4m5m6m7m8m9m

5m6m7m8m9m10m
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Rearranging the determinant and replace m by n we get the required result (4.1).

5 Generating Matrix {Cn} :

Now, we obtain some identities with the help of generating matrix, we consider the matrix,

 

010000
001000
000100
000010
000001
111111

  ]T[ 
                           (5.1)

By mathematical induction we can show that –

[T]n =  
 

JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ

  

5n4n4n4n4n4n

4n3n3n3n3n3n

3n2n2n2n2n2n

2n1n1n1n1n1n

1nnnnnn

n1n1n1n1n1n













where, n > 5  (5.2)

[Cn, Cn-1, Cn-2, Cn-3, Cn-4, Cn-5] = [T]n-5 [C5, C4, C3, C2, C1, C0 ]              (5.3)
On using (5.2) and (5.3), we get –

        



















































































































5n

4n

3n

2n

1n

n

5n4n4n4n4n4n

4n3n3n3n3n3n

3n2n2n2n2n2n

2n1n1n1n1n1n

1nnnnnn

n1n1n1n1n1n

5Pn

4Pn

3Pn

2Pn

1Pn

Pn

C
C
C
C
C
C

  

JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ
JNMLKJ

  

C
C
C
C
C
C

From this we obtain –

Cn+P = JP+1Dn + KP+1Dn-1 + LP+1Dn-2 + MP+1Dn-3 + NP+1Dn-4 + JnDn-5       (5.4)
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Let us now consider the matrix [W] which is transpose of the matrix [T] in,

[W] =  

000001
100001
010001
001001
000101
000011

  ]T[ '  It can be shown that the sequence,

C4, P5, Q5, R5, S5, C5, …, Cn-1, Pn, Qn Rn, Sn, Cn                 (5.5)
It is generated by matrix [W]

    [Cn, Pn, Qn, Rn, Sn, Cn-1] = [W]n-5 [C5, P5, Q5, R5, S5, C4],  n > 5                 (5.6)
On using (5.5) and (5.6), we get [Cn+P, Pn+P, Qn+P, Rn+P, Sn+P, Cn+P-1]

= [W]n+P-5 [C5, P5, Q5, R5, S5, C4],      n > 5
= [W]P     [Cn, Pn, Qn, Rn, Sn, Cn-1]

= 































































1n

n

n

n

n

n

5P4P3P2P1PP

4P3P2P1PP1P

4P3P2P1PP1P

4P3P2P1PP1P

4P3P2P1PP1P

4P3P2P1PP1P

C
S
R
Q
P
C

  

JJJJJJ
NNNNNN
MMMMMM
LLLLLL
KKKKKK
JJJJJJ

  

Cn+P = JP+1Cn + JPPn + JP-1Qn + JP-2Rn + JP-3Sn + JP-4Cn-1

Pn+P = KP+1Cn + KPPn + KP-1Qn + KP-2Rn + KP-3Sn + KP-4Cn-1

Qn+P = LP+1Cn + LPPn + LP-1Qn + LP-2Rn + LP-3Sn + LP-4Cn-1

Rn+P = MP+1Cn + MPPn + MP-1Qn + MP-2Rn + MP-3Sn + MP-4Cn-1

Sn+P = NP+1Cn + NPPn + NP-1Qn + NP-2Rn + NP-3Sn + NP-4Cn-1

Conclusion and its application

There are many known identities for Fibonacci recursion relation. We define the sequence
{Cn} and its four comparison sequence {Pn}, {Qn}, {Rn}, {Sn}.We derive linear sum and properties
of comparison sequence. We also derive generating matrix for {Cn}.
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Scope of the future work

More than four comparison sequence can be defined and new relationship have been derived.
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