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Abstract

Effects of slip and heat transfer on the peristaltic flow of MHD
Carreau fluid is studied under long wave length and low Reynolds number
assumptions. The channel asymmetry produced by choosing the
different peristaltic wave train likely sinusoidal, triangle, square,
trapezoidal and sawtooth. The nonlinear governing equations are solved
using a perturbation technique based on small Weissenberg number.
Expressions for the stream function, pressure gradient, temperature
distribution, axial induced magnetic force function and shear stress on
the wall are obtained. The effects of different parameters entering into
problem are discussed numerically and explained graphically. We
concluded that size of the bolus decreases with increasing Hartmann

number M and partial slip 3 .

1. Introduction

There has been a recent interest in
peristaltic pumping which can produce a flow in
a duct completely isolated from the pump of
mechanism. Roller pumps, used to pump blood,
food or corrosive liquids operate under the
principle. Considerable analysis of this
mechanism has been carried out, primarily for
a Newtonian fluid with a periodic train of
sinusoidal peristaltic waves. The inertia free
peristaltic flow with a long wavelength at low
Reynolds number analysis was given by

Shapiro et al.k. Peristaltic transport of blood
in small vessels was investigated using the
viscoelastic, power-law, micropolar, Casson
fluid etc, models by 21°. However in Refs. 1114,
the authors have analyzed the interaction of
slip and the heat transfer on the peristalsis.

Very recently, the combined effects
of heat transfer and magnetic field on the
peristaltic transport of a Carreau fluid have
been discussed in Ref.?. The existing literature
indicates that the heat transfer and magnetic
field characteristics on the peristalsis have not
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been discussed so far when no-slip condition
is no longer valid. In all these previous investi-
gations authors have discussed the velocity
field, pressure gradient, pressure rise and heat
transfer distribution but they did not study the
different wave forms and shear stress on the
peristaltic flow of a Carreau fluid.

In this paper, we study the steady
incompressible MHD Carreau fluid flow in an
asymmetric channel under the effects of slip
and heat transfer with long wavelength and
low Reynolds number assumptions. The problem
examined numerically using perturbation
technique by small Weissenberg number, which
provides an effective computation tool for the
solution of nonlinear equations. The influence
of different parameters on axial velocity, pressure
gradient, pressure rise, shear stress, axial
induced magnetic field, temperature distribution,
trapping and different wave forms phenomena

are studied and discussed graphically*>2°,
2. Mathematical formulation :

Let us consider the peristaltic transport
of an incompressible Carreau fluid under the
effect of magnetic field in a two—dimensional
channel of width d, +d, . The flow is generated
by sinusoidal wave trains propagating with
constant speed c along the asymmetric
channel. The geometry of the wall surfaces is
defined as

hl(X,t)zdl+alcos{zf(X—ct)}

upper wall (D)

lower wall 2
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in which 3 and a,are the amplitudes of the
waves, 2 is the wave length, c is the wave speed,
¢ (0<¢<r) is the phase difference, X and Y
are the rectangular coordinates with X measured
along the axis of the channel and Y is
perpendicular to X. Let (G,v) be the velocity

components in fixed frame of reference (X,Y).

It should be noted that ¢ = 0 it corresponds to
symmetric channel with waves out of phase
and for ¢ = 7 the waves are in phase.

Furthermore, a, a,, d,, d,and¢ satisfy the
condition
2
- ©)
Introducing a wave frame (X,y)
moving with velocity ¢ away from the fixed
frame (X,Y) by the transformation

a’+a, +2a3,cosp<(d,+d,)

X=X-cf, y=Y,0(X,¥)=U-c, V(X,¥)=V. (4)
3. Equations of motion :

The governing equations governing the
flow in the present problem are®

A constant magnetic field of the
strength H,, is applied in the transverse direction.
This gives rise to an induced magnetic

field H*(@(X,V,f), h (X,Y.T), o) and hence

the total magnetic field become
H (R (X,Y,T).H,+ b, (X.Y.T), 0).
V.H=0, V.g=0o, (5)

VxA=3, J=cfs (V" H)),  (6)

- oH
Vxe=—lg—, 7
He P (7)
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V-V'=0, (8)
ha%uv V)RV = —Vp +divi— pe$ﬁH*.v}l—;ﬁH*}lzvg,
©)

pCpi—-{=KV2T+Tl~L. (10)

In the above expresses ions 1 is the
Cauchy stresstensor. L = gradV , pis the pressure,

H is the induced magnetic field, J the current
density, ne magnetic permeability, o the electrical

conductivity, g electrical field, Cy the specific
heat at a constant volume, k the thermal

conductivity and temperature. The velocity \/
is defined by

V=(T,v,0).. (11)
The constitutive equation for a Carreau fluid is

f:{nw+(no—nw)(1+(w)z)ﬂ% (12)

where t is the extra stress tensor, U is the
infinite shear rate viscosity, n, is the zero
shear-rate viscosity, I' is the time constant, n
is the dimensionless power law index. The
above model reduces to Newtonian Model for

n=1or I'=0 and y is defined as

?=I ZZV.JVJ. \/7

Induction equation after using Egs. (5)-(8) take
the form
ﬁ =V x {V X ﬁ+}+1v2ﬁ+. (14)
ot g

(13)

in which € = L is magnetic diffusity.
op

e

The following non-dimension quantities are also
defined

X:z, y:l, u:g, V:z’ tzgf’ hl:g’
A d, c c A d,
hzzrl—z,’[:if’q): (D_,st_i He

d, HC H,d, Ch\p
J7711 _dll :E’ al 71 ﬁ5]'1
y = . S =—L:We ) p Mup Re u
pvC
M = %Bodl, Rm =ou.ac, Pr = d )
2 _ —
9_T To, E= ¢ ) y/—l_,azi
T,-T, Cp(T1 To) cd, d,
a d,
b=22, 4%, (15)
d d,

Using the above non-dimensional quantities
have given in the Eqgs. (9) and (14), the
resulting equations in terms of stream function
can be written as

0
Reé{awg_a_wz}aw}:_%+5%+&

oy ox  Ox oy ) oy X x oy
+Reds;? [a¢ 0_o¢ 6J6¢ wRes? 2l (1)
oy Ox oxoy)oy oy
Re53{[5‘/’i_5_‘/’ij5_!//}_ O, 5207y
oy ox  0Ox 0y ) oX 3)/ 6x
+51Y _Res? 12[6¢a_a¢aj¢_ 52812 52¢
oy ox Ox 0y ) ox oxoy
(17)
0 Oy 0¢p Oy O
ey R
oy oy x ox oy Rm
azf+Br{1+( _1)We }(5!/2/_62621/2/]621,2/:01
% 2 oy ox? ) oy
(19)
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where
u:a_l//1 56_‘/’, hx_%’ h,
oy OX oy
o¢
=—-0—, Br=EPr,
ox (20)
L gy (1)
P p+ERe6 e (22)
0?0
VZ:EZE—FW, (22)
_ (n-1) oy
T“——2{1+ > ~———We?y aay ' (23)

n-1 2.2 62 262
Ty = {1+( 5 )We 14 }[6;/2/_5 6)32/}'(24)

[25 (a 4 ] +(az"2’ _5 62"2’}252[82"’] 1 .
OXoy oy OX oxoy

(26)

Here §isawave number, Re the Reynolds number,

Rm the magnetic Reynolds number, S; the

Strommer’s number, pn, the magnetic pressure,

We the Weissenberg number, M the Hartman
number, Pr the Prandtl number, E the Eckert

number and Br the Brickman number?-24,

Egs. (16) - (19) after invoking long wave length
and low Reynolds number assumptions reduce

to
2-alr e o -5
(27)
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X _o,
oy (28)
0 1 0’ %0 (n-1). (& o B
Do oo (5]
(29)
822 3 1)We2(82—u2/j az"j —M26”§=0
oy oy oy oy
(30)

4. Boundary conditions :

In the wave frame, the boundary conditions are

_q v, a"’——l 0 =0, =0 at
2 oy
=h =1+acos2zx, (31)

yo_9 v ﬁ8W=—1 0=1 ®=0at
2" oy oy

y=h, =—d —-bcos(2zx+¢). (32)

The dimensionless mean flow rate in laboratory

Q and wave frame F are related by the following

expression

Q=F+d+1.
in which

_ (hx)oy
F= LZWT

5. Perturbation solution :

(33)

(b (x)) -y, (x))

For perturbation solution, we expand,
w,q, pand @ as

y =y, +Wey, +O(We*), (34)
0=, +We’q, +O(We'), (35)
p=p,+We’p, +0(We). (36)
® = D, +WedD, +O(We* ). (37)
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The perturbation series solution up to second order for stream function v, pressure gradient %

pressure rise AP,, magnetic force function ® and shear stress z,, can be summarized as

v =C,+C,y+C,coshMy+C ,sinh My
+We?[C, + C;y +C, cosh My + C, sinh My
4
_“él_4(n—1)(c3(c32 +3C; )cosh3My +C, (C; +3C; )sinh 3|v|y)

3

M {(2“\/' Qﬁ)s'”h'\/‘(hl 2h j+Mq<:oshM[hl;h2ﬂ

%=M26+
dx |:(2_M2ﬁ(hl_h2))smhM[hl;hz):|_M(hl_h2)COShM[hl;hzj
_\Wa2 M2 ~ ol _LeLs_
e (hl—hz)(q h-h)L L LGHI
2
0
9:_M;Br(C§+CE) M 2Br _ r\A:‘rEsr(Caz_C;)yz+ng+C10
N A g

(z
2( L, +L,y- ] (n- 1)cc ,(cz-cz)|inn2My
11T Lig 2 IVE
+(2|_1 L1 1)(0
16

3 2
+(2|_ +=(c —cf)zjyz]—c“y—cu},

[(E C) —C—smhMy—ﬁcoshMyJ+C13y+C14

3

15
2

-We?| R, Csy—+ 1 sinh My+c—gcosh My
2 M M

_ (Zg_l)M *(C,(C2+3C?)sinh3My + C, (CZ +3CZ )cosh 3My )

1 —(C,sinh My + C, cosh My)

eV (n—1)(C3 —CZ)((2C, + MC,y)cosh My +(MC,y +2C, )sinh My) |,

‘4 CH16C2CE )]°05h4';"y+[2|_“ (n- l)cc .(cz+c ))S'”h‘”‘z"y
16M 4 16M

3 n-— M (C,ycosh My +C,ysinh My
( 6 ) ( 3 Cf)[ ( ) ’ )j_c15y_c16‘|1

(38)

(39)

(40)

(41)

(42)
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-1
7,, =—M?C, cosh My — M C, sinh My —We? %(M 2C, cosh My + M °C, sinh My)a

—%M *(n-1))(C,(C2 +3C; )cosh3My +C, (C +3C; )sinh 3My )

+M?C, cosh My + M °C, sinh My (43)

—% M®(n—1)(C; —C7)((2C;+MC,y)cosh My +(MC,y +2C, )sinh My)}

were

] MthcoshM(hl;hzj [(2+M2qﬁ) (a+h—h,) sm [

) [2-M?B(h—h,) smhM(hlzhzj M (h,—h, )cosh M [ )

")

2+M q,B smhM h—h, +Mgcosh M

C,=- {( ( 2 J [ ﬂ

2 (Z—MZ,B(h1 h,) smhM h—h, —M (h,—h,)coshM sl

( 2 J [ 2 j

{(q +h —h,)sinh M (hlzhzﬂ

CS:_[Z—MZﬁ(m—hZ)]sinhM(hl;hzj—M(hl—hz)coshM(hl;hz)
(q+h, - h)coshM(hl+h)

C, =

[2-M?B(h ~h,)]sinh M (hl;hZJ—M (h,—h,)cosh M [hl_hzj’

g (%+ i “ﬁ‘qj‘smhm[n?h“ﬂj

(hl_hz) L7 (hl_hZ)L7 I-7

cosh Mh, M q )
M (sinh Mh, — smth)[ (cosh Mh —cosh Mh ){hl—h2+|_8j+l_3 '—J L,
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Co=

1 L Ll
(h- h)[q_ (h-h)L L, Lﬁj

e

C, =
! (smth1 sth

1
CS—L7( +L8]
c. - 1 [, Brm? (CZ +C7)(Cosh2Mh, —cosh 2Mh, ) +2(C? —C7 )(h? —h;) |
(h,—h) 8 | +2c,C, (sinh 2Mh, —sinh 2Mh, )
1 _ BrM? (C3 +C7 )(h,Cosh2Mh, —h, cosh 2Mh, ) +2(CF —C3 ) hh, (h} —h7)
? (h—h,) "y +2C,C, (h, sinh 2Mh, —h sinh 2Mh, ) ’

C,= —B{[Z(Lg —%)+ (n-1) Llejmlz(cosh 2Mh, —cosh 2Mh, ) + 2';\1;2 (h, cosh2Mh, —h, cos 2Mh, )

+[2(Ln -ij+w LHJ 4|\1/| _(sinh 2Mh, —sinh 2Mh )

+(2L13 + (n-1) Lmj 1 (cosh4Mh, —cosh 4Mh,)

(he )
—,

-1 1 . . 3 13
+(2L14 + (n-1) ng]lGM ~(sinh 4Mh, —sinh 4Mhl)+%(h2 —h)+ (2L + Ly

C, = —Br|:[2(|_g _ijJr (n-1) Lmjmlz(h2 cosh 2Mh, —h, cosh 2Mh2)+ﬁhlh2 (cosh 2Mh, —cos2Mh,)

Ly (n-1)
+[2(L11 M)+—2 L17J4M2(h sinh2Mh, —h; sinh 2Mh,)

hlhz (hl _hz)
—2 )

+[2L14+(n_1)L19j 61 (h, sinh4Mh, — hlsmh4Mh)+ S hyh, (W2 —h2)+(2L + L)
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C Ry (E-C )(hlz _hzz) —&(smh Mh, —sinh Mh, ) —=%(cosh Mh, —cosh Mh, )
2 (h=h) 2 M
C,= (th—mh )((E C )hlh (h-h) C (h,sinh Mh, —h, sinh Mh, ) (h, cosh Mh, —h, cosh Mh )]
[ —L(sinh Mh, —sinh Mh, ) + Ic\:/l (cosh hMh, —cosh Mh, )
- 192 Y s +(C$ +3C; )(sinh 3Mh, —sinh3Mh, ) + C, (CF +3C; ) (cosh 3Mh, — cosh 3Mh, )
( 1Y ( C;)C4 (M (h, cosh Mh, —h, cosh Mh, ) —(sinh Mh, —sinh Mh, ))
_¥M °C, (€3 - CZ )(M (h, sinh Mh, — h, sinh Mh, ) - (cosh Mh, — cosh Mq))]
C,-— ¢ i, hl) (h1 sinh Mh, —h, sinh Mh, ) + (hl cosh hMh, —h, cosh Mh, )

16 (hl _hz) 6 2
—(n_l)w(c (C +3CF ) (h, sinh3Mh, ~h, sinh 3Mh ) + C, (CF +3C; ) (h, cosh Mh, —h, cosh Mh ))
3 3 4 2 2 4 4 3 2 2 1

192
_ 3(r116—1) M“C, (C; ~C7 )(Mhh, (cosh Mh, - cash Mh, ) - (h, sinh Mh, — h, sinh Mh,))
_ 3(r116—1) MC, (CZ ~C?)(Mn,h, (sinh Mh, —sinh Mh,)— (1, cosh M, —h, cosh M),

L = —I\él—;(n ~1)(C,(C? +3C; )cosh3Mh, +C, (C; +3C; )sinh3mh, |

_%M *(n-1)h, (C3 - CF)(C,sinh Mh, +C, cosh Mh, ),
4
L= —'\é'—4(n 1)(C, (C2 +3C2 )cosh3Mh, +C, (C2 +3C? )sinhaMh,

—%M *(n-1)h,(C; —C;)(Cjsinh Mh, +C, cosh Mh, ),
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3M°(n-1 s o 2 ) 2 o2 )
L= é4 )((CB(Q+3C4)+3ﬂMC4(CA+3C3))smh3Mhl+(C4(C4+3C3)+3ﬁMC3(C3+3C4)))cosh3Mhl
_3M5(n—1)

16

(C7-C2)(((C,+MRC,)+3BM (MC, +2C, ) )sinh Mh, +((M,C, +C, ) +3BM (2C, + MhC,)) cosh Mh, ),

L4=—&62_1)((c3(c§ +3C7) +3BMC, (C7 +3C5 ))sinh3Mh, +(C, (CZ +3C5 )+ 3BMC; (€S +3C ) cosh 3,

3M°(n-1)
16

(€2 —CF)(((C, +MNC,)+3BM (MNC, +2C,))sinh Mh, +((MhC, +C,)+3BM (2C, + MhC, ) ) cosh M, ),

(sinh Mh, —sinh Mh, )’ —(cosh Mh, —cosh Mh, )’

i (sinh Mh, —sinh Mh, ) !
L6=L1—L2—(L3_L4)_(COSh Mhl-—cosh Mh,) |
M (sinh Mh, —sinh Mh, )
_ L M (cosh Mh, —cosh Mh, )(sinh Mh, + M costhl)_ )
L7_(hl—h2)+ (sinh M, —sinh M M (cosh Mh, + SM sinh Mh, ) ,
_ L, (L, —L,)(sinh Mh, + BM cosh Mh,)
LB_Ls_ - " - ,
(h-h) (sinh Mh, —sinh Mh,)
M? 3.5 A B N

L9=7{C3(MC7—5M (n-1)C;(C7-Co) =y M (n—1)cs(c3+3c4)j

v, (e, 2w (0=, (65 i) M (n-e o+ ||

3

Lo =3 M* (n-1)C,c, (¢} -c?).
4
L11:MT(Cacs_C4C7_§M4(n_l)c3c4(c32_C‘f)j’
3 5 4 4
LIZZ_EM (n—l)(C3_C4)a
9 8 4 4 2h2
Ly =M (n-1)(Ci+Ci+6CiCE),

9
L =—55M" (n-1)CC, (G} +CF),
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L, =MT[C3C7 ~C,C, —ng(n—l)(ng —Cf)z)’
1
Lo=5(Ci-c). L, =ce,(ci-ci),

Lig =%(C§+Cf+6C§Cf),

1

Ly :ECSC4 (032 +Cf), Lo =§(C; _C:)z'

6. Expressions for wave shapes :

The non-dimensional expressions for
the five considered wave forms are given by
the following equations:

I. Sinusoidal wave:
h (x)=1+asin(27x),
h, (x)=-d —bsin(2zx+4¢),

(44)
(45)

Il. Triangular wave:

8.& (L™
hl(x)=1+a{”3mz;(gm)_l)zsm[(2m—1)x]}’ (46)

>sin[(2m -1)x + ¢]}

(47)
Il. Square wave:

h(x) = 1+a{ z( )mﬁ cos[(2m—l)x]}’ (48)

_4_plis ™ -

IV. Trapezoidal wave:

30 (2m 1
h(x)=1+a ?;ﬁsm[(Zm 1)x] (50)

Y. Rajesh yadav, et al.

P sin%(Zm—l) _
h,(x)=-d-b ?;Wsm[(Zm—l)xwﬁ] :
(51)
V. Sawtooth wave:
h()-1+a { 32sm[27zmx} (52)
hz(x)——d—b{iis- 2’”““‘”}. (53)

7. Results and Discussion

In this section results are presented
and discussed for different physical quantities
of interest. The temperature field for different
values of the mean volume flow rate @ , partial
slip 8, Weissenberg number We and brinkman
number Br are shown in Figs. 1. It is observed
from the figures that the increase in Q, We
and Br the temperature field increases while
with the increase in S, the temperature field
decreases. In Figs. 2, the axial velocity
distribution is shown for different parameters
the mean volume flow rate ¢ and Hartmann
number M. In Fig. 2(a) we found that the mean
flow rate increase with increases the magnitude
of the axial velocity and in Fig. 2(b) the
magnitude of the axial velocity decreases in
the center and increases nearer at the walls
of the channel with increasing the Hartmann
number M. Figs. 3 analyzes the Ry, magnetic
Reynolds number, E the Eckert number, volume

flow rate Q and partial slip B on the axial
induced magnetic field. We observed that an
axial magnetic field hy decreases by increasing
Reynolds magnetic number Ry, Eckert number
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E and partial slip g are in one direction in some
part of region where as in other part are in opposite
direction in Figs. 3(a)-3(c) and also we have
seen in Fig. 3(d) behavior of volume flow rate

Q s reverse.

Figs. 4 are plotted to see the effect of
the parameters M and S on the pressure
gradient dp/dx. x=0.5. Fig. 4(a) indicates that
the pressure gradient dp/dx increases with
increasing Hartmann number M and the
maximum pressure gradient is also near x=0.5.
Fig. 4(b) show that the pressure gradient dp/
dx decreases with increasing the partial slip
. Figs. 5 are graphs of the dimensionless

pressure rise AP, versus the variation of time-

average flux Q. The graphs is sectored so
that the quadrant (1) designated as region the
peristaltic pumping (Q>0 and AP, >0).
Quadrant (1) is denotes the augmented flow
when Q>0 with AP, <0. Quadrant (V) such

that Q <0 and AP, > 0 is called retrograde (or)
backward pumping. It is shows that there is a
nonlinear relation AP, versus q. Fig. 5(a) isa

graph of the pressure rise AP, per wavelength

versus the mean flow rate g of the asymmetric
channel for fixed values of other parameters.
We observed that an increase in the Hartmann
number M result decreases in the peristaltic
pumping rate and also in an increase in the
pressure rise. Fig 5(b) show the variation of

pressure rise AP, with flow rate g for values
of partial slip. We observe that the peristaltic
pumping rate decrease with increase S. The

variation of the axial shear stress 7,, withy
is calculated from Eq. (43) and is shown in

Y. Rajesh yadav, et al.

Figs. 6 for different physical parameters. In
Figs. 6(a) we observed that the curves intersect

atorigin and the axial shear stress z,, decreases

with increasing the Hartmann number M in the
upper wall and an opposite behavior is observed
in the lower wall of the channel. The relation

between the shear stress 7,, andy at different

values the partial slip parameter g is depicted
in Fig. 6 (b).

7.1 Trapping phenomena :

Another interesting phenomenon in
peristaltic motion is the trapping. It is basically
the formation of an internally circulating bolus
of fluid by closed stream lines. The trapped
bolus will be pushed ahead along the peristaltic
waves. The stream lines are calculated form
Eqg. (38) and plotted in Figs. 7-11. It is shown
in Figs. 7 that the size of bolus decreases with
increasing the Hartmann number M while the
bolus disappears for M=3.49. Fig. 8 is depicted
for various values of the partial slip parameter
B, It is found that the volume of the trapping
bolus decreases as the partial slip parameter
increases, moreover, the bolus disappears at
p=0.5. Figs. 9-11 compare for different wave
forms like sinusoidal, triangular, trapezoidal,
square and sawtooth wave, it is finally observed
that the volume of trapping bolus of the Carreau
fluid(n=0.398) large in the upper channel and
small in the lower channel but an opposite
behavior in the case of the Newtonian fluid
(n=1) and also the size of the bolus decreases
with increase the partial slip.

Conclusion

In the present note, we have discussed
the peristaltic transport of a Carreau fluid under
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the effect of magnetic field with partial slip.
The two-dimensional governing equations have
been modeled and then simplified using the
long wave length approximation and then
solved by using the perturbation technique. The
results are discussed through numerically and
graphically. We have concluded the following
observations:

o The magnitude of the velocity field increases
near the walls and decreases at the center
of the channel when increasing the Hartmann
number M

e The pressure gradient decreases with
increasing the partial slip parameter .

o Inthe peristaltic pumping region the pressure
rise decreases with increasing g and M.

e The shear stress distribution decreases in
the upper wall and increases in the lower
wall of the channel with increasing M and
also opposite behavior in .

e The size of tapping bolus decreases with
increase S and M while it disappears at
M=3.49 and $=0.5.
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