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Abstract

In the present paper, we study approximation of signal
cesàro operator involving Langrange interpolating polynomials. Here
signal is a function which is use in form of the Jacobi Polynomials.
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1 Introduction

        Let C[-1, +1] be the set of all real valued
continuous functions defined on the interval
[-1,+1] and (x) denotes the nth Jacobi
polynomial of order , β > -1. The set
{ (x) } (n = 0,1,2….) is a complete
orthogonal set of Jacobi polynomials having
its zeros spread over [-1,+1].

The Jacobi polynomials (x) is
defined as the solution of the homogenous
differential equation of second order.
(1 – x2) y + {( + 1) – ( + β +2) x} y + n
(n++β+1) y = 0         (1.1)

It is known (Szegö4) that the differential

equation (1.1) has a polynomial solution

y = c  (x)   (1.2)

Which is not identically zero.

The Jacobi polynomials also satisfy
the Rodrigues formula:

     n

(1-x)(1+x) (x) =       {(1-x)n+

(1+x)n+β )}           (1.3)

, β are arbitrary (see Szegö4). For  = β = 0,
the Jacobi polynomial reduces to the well
known Legendre polynomial.

For a continuous function on the
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interval [-1,+1], first we define the uniquely
determined Lagrange interpolating polynomials
of degree  n-1 as follow

(f ,x) =

 
  n

  Σ f  (x) (1.4)
k=1
Where

    (1.5)

And =xk (k = 1,2….,n) are roots of .

-1 <  <  < ….. < … < < <1 

                  (1.6)
It is well known that

k

n




1
 (x)=1(see Szegö)4, (14.1.5)) (1.7)

(n = 1,2,…)

We have studied a polynomial (say) “Cesàro
Lagrange interpolating Polynomial”, which has
better convergence property in [-1,+1]. We
define it in the following way2,5,6:

 (f,L,x)=         (1.8)

Now, by   (1, x) = 1, we have

f (x)–  (f ,L, x)|=| f (x)-   |

     =|   f (x)         
v

n




1
 (l, x) - 

v

n




1
  f (x) |

     =       
v

n




1
{f (x) -   (f ,x)}

     ≤      
v

n




1
     |  f (x) -   (f ,x)}| 

     =          
v

n




1
           f (x) -

k

v




1
      f    (x)    

    =         
v

n




1
         f (x) 

k

v




1
     -

k

v




1
       f  (x)

     =         
v

n




1
 

k

v




1
 (f (x) - f )  (x)   

     =         
v

n




1 k

v




1
                 f (x) - f   (x)   (1.9)

2. Main Results

Concerning the convergence of
Lagrange interpolation Vertesi, P.O.H.3 has
given the following theorem.

Theorem: If x is an arbitrary point
from (-1,1) then there exists an f (x) C[-1,1]
a sequence {ωm} and 0 < n1 < n2 <…. Such
that

(f ,x*) – f (x*) > log nωn   (2.1)

(n=n1, n2, n3….., x*  ±1; , β>-1; x*(-1,1)

We consider a subspace lip δ (0 < δ < 1) of
C [-1, +1) such that f C [-1,+1] for all x, y 
[-1,+1], there exists a constant M, so that

 f (x) – f (y)  M x – y δ , (0 < δ < 1) (2.2)

It is natural to think beyond the continuity
of the function. In this regard, for f є  lip δ (0
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< δ < 1), we not only find the convergence of
the operator  (f ,L,,x) but we also deduce
the rate of convergence which we call the
degree of convergence of . Moreover it is
traced that the function f is represented by
the interpolatary polynomial . Precisely, we
prove the following:

Theorem 1: Let f  lip δ (0 < δ < 1)
Then

|| f (x)–  (f ,L,x) |[-1,1] = O(1) (2.3)

for -1 < α  -½ , and β arbitrary,  (f ,L,x) is
defined by (1.8)

To prove the theorem we need the
asymptotic orders of zeros of Jacobi
polynomial and certain known results about
Jacobi polynomials, which are as follows.

Lemma 1: Szegö4 page 169 (7.32.5)

            θ--½ O(n-½)  ;     ≤ θ ≤ 

(cos θ)= (2.4)

O(n)        : 0 ≤ θ ≤  

Some known results from Szegö4

θk
(,ß) = θk = [kπ + o(1)]  (k = 1,2, …….,n ;n

= 1,2,….)  (2.5)

|  (cos θk)|~k-α-3/2 nα+2 (0<θk ; n = 1,
2,…)          (2.6)

Let   x = cos θ, xk = cos θk (k = 1,2,….n)
       x0 = 1, and xn+1 = -1
Then

 

  θk+1-θk    (k = 0,1,…n) (see Vertesi3)
                    (2.7)

  with 0 < c1 = c1 (,β)   and c2  = c2  (,β)

  and | x – xk |  ~ n-2 | j2 – k2 |   if x  [xj+1, xj]

(k = 0,1, …. n+1 ;  k  j, j + 1 (see Natanson’s
G.I.1 Lemma 1 and 2)

Further

    (-x)  = (-1)n Pn
(,β) (x)  (2.8)

    = λk ~ (1– xk
2) [  (xk)]-2  (2.9)

    λk ~  θk
2α+1n-1 ~ k2α+1n-2α-2 (0 < θk   π – )

          (2.10)

where λk are the christoffel number (Szegö4,
(15.3.14)).

If xjn = xj be the nearest root of x, then we
write

   i=| k–j | for k  j and i = 1 for k = j (2.11)

We often use

| θ - θk  | ~   , (k  j)  (2.12)

Proof of the theorem 1 :

For f  lip δ (0 < δ < 1), we have

   | f (x) – f (xk) |  M | x - xk |δ

Then by (1.9), we get



|| f (x) –  (f ,L,x) ||[-1,1]  M n-1

V

n




1
   

k

v




1
 | x - xk|

δ lk
(,β)(x)

To make the analysis crystal clear, we estimate the interior sum  "
k

v




1
"   as given below

for α replaced by α + 1. s

Thus,

  k

v




1 | x – xk |
δ   (x) = O    k

v




1 | x – xk |
δ  

 

  

where xk =  is the kth zero of the vth

polynomial    (x) .

=  Σ  +     Σ        +        Σ        +     Σ
  k=j  |x-xk|<є (α+1,ß)  x-xk>є (α+1,ß) xk-x>є (α+1,ß)
   I   +     II        +       III       +     IV

Now, we consider I

For k = j, we have

=  (xj) 

Then,
 (x) = (x - xj)  (xj) 

 {since  (xj) = 0}
So,

I = O {|x - xj |
δ .l}

  = O {(   

  =O(v-δ)  (2.13)
Now we discuss II.

Since |x – xk |<  (α+1,β)=> k=n and |x–xk | ~  

Let x – cos θ, xk – cos θk and here we
will conclude for θk < θ and θ < θk  respectively,
so

II = II1     +    II2
                 θk<θ        θ< θk

First we discuss II1

Here θk < θ

Case (a):  θ  , 2θk > θ  but θk<θ, so θ ~θk

Then

II1 = O 
k 1

v


  | x - xk |

δ  

    =O 
k 1

v


   

 δ-1
   using (2.4) and (2.6)

   =O  
k 1

v


  

 

 δ-1
     (since θ~θk

=  
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    =O
k 1

v


   

 

  δ-1
 k.v-2

    = O  
k 1

v


   kδv-δ-1

     = O (1)  (2.14)

Case (b) :    θ    , 2θk < θ, so θk = O(θ)

Then

II1 = O{   

        = O  
k 1

v


   

 

  δ-1 
 

    = O (1)    (as estimated earlier)    (2.15)

Now, we calculate II2

Here θ < θk

Case (a):    0  θ     Now by (2.7), 2θ < θk

So,      x - xk  = cos θ – cos θk 

i.e.     | x - xk|       and  x –xk > 0    (2.16)

So

 II2=O  
k 1

v


 | x - xk |

δ 
 

    = O  
k 1

v


  | x - xk |

δ-1
 

  Using (2.4), (2.6) and (2.7)

  = O 
k 1

v


      

δ-1
 v-2kα

  

  

  

  

  

  

    = O    v-2δ  
k 1

v


    k2δ+α+1/2

   = O   v-2δv2δ+α+3D 2

   = O   vα+3/2  (2.17)

Case (b) :    θ  , 2θ  θk,  but θ<θk= θ ~ θk

II2 = O  
k 1

v


  | x – xk|

δ-1

                             using (2.4) and (2.6)

    = O  
k 1

v


  

 

  δ-1
k-α-3/2+α+5/2vα+3/2-1/2-α-3

{since θ ~ θk =  }

     = O {
k 1

v


  v-δ-1kδ}

      = O(1)  (2.18)

Case (c) :    θ    and 2θ  θk. As in case

(a), we get
II2 = O {vα+3/2}   (2.19)

On combining (2.14) to (2.19), we get
II = O {vα+3/2}  (2.20)

Now we take III

III = O  k=1
x-x

v

k 

   | x - xk|

 

    = O  
k 1

v


   

 δ
 

    = O 
k 1

v


   

 δ
 k-α-3/2+α+5/2vα+3/2-1/2-α-3

     = O   
k 1

v


   

 δ
 kv-2

   = O(1)   (2.21)

  

  

  

   

  

 

є 
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At last we estimate IV

IV = O  x -xk 
   | x-xk|  lk

(α+1,β)

Since xk – x >  > 0

So    <    

Thus it can also be estimated as in case III,
that is

IV  = O(1)  (2.22)
On combining the results obtained in (2.13),
(2.20), (2.21) and (2.22), we get

k=1

v
  | x-xk |

 lk
(α+1,β)(x) =O(v-δ)+O(vα+3/2)+ O(1)

Now replacing α+1 by α, we get

k=1

v
  | x-xk |

lk
(α+1,β)(x)=O(v-δ)+O(vα+1/2) + O(1)

Thus, we have

|| f (x)– (f ,L,x) || -1,1= O(v-δ)+O(vα+½)+ O(1)

For 0 < δ < 1, under supremum norm

|| f (x)– (f ,L,x) ||-1,1 = O(1)

For all -1  α  -½  and β arbitrary.

є 
 

This completes the proof of theorem 1.
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