Approximation of Signal by Cesàro Operator Involving
 Lagrange Interpolating Polynomials
 on Jacobi Polynomials

S.P. YADAV and PREETI SINGH
Asstt. Prof, LNCT Group, Indore (India)
Spreetisingh1418@gmail.com

(Acceptance Date 9th April, 2015)

Abstract

In the present paper, we study approximation of signal cesàro operator involving Langrange interpolating polynomials. Here signal is a function which is use in form of the Jacobi Polynomials.

Key words: Approximation of Jacobi Polynomials, cesàro operator, Langrange interpolating polynomials.

2010 Mathematics Subject Classification: 41A10, 41A25

1 Introduction

Let $C[-1,+1]$ be the set of all real valued continuous functions defined on the interval $[-1,+1]$ and $P_{n}^{(\alpha, \beta)}(x)$ denotes the $n^{\text {th }}$ Jacobi polynomial of order $\alpha, \beta>-1$. The set $\left\{(x) P_{n}^{(\alpha, \beta)}\right\}(n=0,1,2 \ldots)$ is a complete orthogonal set of Jacobi polynomials having its zeros spread over $[-1,+1]$.

The Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$ is defined as the solution of the homogenous differential equation of second order.
$\left(1-x^{2}\right) y+\{(\alpha+1)-(\alpha+\beta+2) x\} y+n$ $(n+\alpha+\beta+1) y=0$

It is known (Szegö ${ }^{4}$) that the differential
equation (1.1) has a polynomial solution

$$
\begin{equation*}
y=c P_{n}^{(\alpha, \beta)}(x) \tag{1.2}
\end{equation*}
$$

Which is not identically zero.
The Jacobi polynomials also satisfy the Rodrigues formula:
$(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!}\left[\frac{d}{d x}\right]_{(1.3)}^{\left\{(1-x)^{n+\alpha}\right.}{ }^{n}, ~$
α, β are arbitrary (see Szegö ${ }^{4}$). For $\alpha=\beta=0$, the Jacobi polynomial reduces to the well known Legendre polynomial.

For a continuous function on the
interval $[-1,+1]$, first we define the uniquely determined Lagrange interpolating polynomials of degree $\leq n-1$ as follow
$L_{n}^{(\alpha, \beta)}(f, x)=$
$\sum_{k=1}^{\mathrm{n}} \mathrm{f}\left(x_{k n}^{(\alpha, \beta)}\right) l_{k}^{(\alpha, \beta)}(x)$
$\mathrm{k}=1$
Where
$l_{k}^{(\alpha, \beta)}(x)=\frac{P_{n}^{(\alpha, \beta)}(x)}{P_{n}^{\prime(\alpha, \beta)}\left(x_{k n}^{(\alpha, \beta)}\right)\left(x-x_{k n}^{(\alpha, \beta)}\right)}$
And $x_{k n}^{(\alpha, \beta)}=x_{k}(k=1,2 \ldots, n)$ are roots of $P_{n}^{(\alpha, \beta)}$.
$-1<x_{n, n}^{(\alpha, \beta)}<x_{n-1, n}^{(\alpha, \beta)}<\ldots . .<x_{k, n}^{(\alpha, \beta)} \ldots<x_{2 n}^{(\alpha, \beta)}<x_{1 n}^{(\alpha, \beta)}<1$
It is well known that
$\left.\sum_{\mathrm{k}=1}^{\mathrm{n}} l_{k}^{(\alpha, \beta)}(x)=1(\text { see Szegö })^{4},(14.1 .5)\right)(1.7)$
($n=1,2, \ldots$)
We have studied a polynomial (say) "Cesàro Lagrange interpolating Polynomial", which has better convergence property in $[-1,+1]$. We define it in the following way ${ }^{2,5,6}$:
$S_{n}^{1}(f, L, x)=\frac{1}{n} \quad \sum_{v=1}^{n} L_{v}^{(\alpha, \beta)} f(x)$
Now, by $L_{n}^{(\alpha, \beta)}(1, x)=1$, we have

$$
\begin{aligned}
& \left|f(x)-S_{n}^{1}(f, L, x)\right|=\left|f(x)-\frac{1}{n} \sum_{v=1}^{n} L_{v}^{(\alpha, \beta)} f(x)\right| \\
& \quad=\left|f(x) \frac{1}{n} \sum_{v=1}^{n} L_{v}^{(\alpha, \beta)}(1, x)-\frac{1}{n} \sum_{v=1}^{n} L_{v}^{(\alpha, \beta)} f(x)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n}\left|\sum_{v=1}^{n}\left\{f(x)-L_{v}^{(\alpha, \beta)}(f, x)\right\}\right| \\
& \left.\left.\leq \frac{1}{n} \sum_{v=1}^{n} \right\rvert\, f(x)-L_{v}^{(\alpha, \beta)}(f, x)\right\} \mid \\
& =\frac{1}{n} \sum_{v=1}^{n}\left|f(x)-\sum_{k=1}^{v} f\left(x_{k v}^{(\alpha, \beta)}\right) l_{k}^{(\alpha, \beta)}(x)\right| \\
& =\frac{1}{n} \sum_{v=1}^{n}\left|f(x) \sum_{k=1}^{v} l_{k}^{(\alpha, \beta)}(x)-\sum_{k=1}^{v} f\left(x_{k v}^{(\alpha, \beta)}\right) l_{k}^{(\alpha, \beta)}(\mathrm{x})\right| \\
& =\frac{1}{n} \sum_{v=1}^{n}\left|\sum_{k=1}^{v}\left(f(x)-f\left(x_{k v}^{(\alpha, \beta)}\right)\right) l_{k}^{(\alpha, \beta)}(x)\right| \\
& \left.=\frac{1}{n} \sum_{v=1}^{n} \sum_{k=1}^{v} \right\rvert\, f(x)-f\left(x_{k v}^{(\alpha, \beta)}\right) \cdot l_{k}^{(\alpha, \beta)}(x)(1.9)
\end{aligned}
$$

2. Main Results

Concerning the convergence of Lagrange interpolation Vertesi, P.O.H. ${ }^{3}$ has given the following theorem.

Theorem: If x is an arbitrary point from ($-1,1$) then there exists an $f(\mathrm{x}) \in C[-1,1]$ a sequence $\left\{\omega_{m}\right\}$ and $0<n_{1}<n_{2}<\ldots$. Such that
$L_{n}^{(\alpha, \beta)}{ }_{\left(f, x^{*}\right)-f\left(x^{*}\right)>\log \mathrm{n} \omega_{\mathrm{n}}\left[\frac{1}{n}\right]}^{x}$
$\left(n=n_{1}, n_{2}, n_{3} \ldots \ldots, x^{*} \neq \pm 1 ; \alpha, \beta>-1 ; x^{*} \in(-1,1)\right.$
We consider a subspace lip $\delta(0<\delta<1)$ of $\mathrm{C}[-1,+1)$ such that $f \in \mathrm{C}[-1,+1]$ for all $x, y \in$ $[-1,+1]$, there exists a constant M, so that
$|f(x)-f(y)| \leq M \mid x-y^{\delta},(0<\delta<1)(2.2)$
It is natural to think beyond the continuity of the function. In this regard, for $f \in \operatorname{lip} \delta(0$
$<\delta<1$), we not only find the convergence of the operator $S_{n}^{1}(f, L,, x)$ but we also deduce the rate of convergence which we call the degree of convergence of S_{n}^{1}. Moreover it is traced that the function f is represented by the interpolatary polynomial S_{n}^{1}. Precisely, we prove the following:

Theorem 1: Let $\mathrm{f} \in \operatorname{lip} \delta(0<\delta<1)$
Then

$$
\begin{equation*}
\| f(x)-\left.S_{n}^{1}(f, L, x)\right|_{[-1,1]}=O(1) \tag{2.3}
\end{equation*}
$$

for $-1<\alpha \leq-1 / 2$, and β arbitrary, $S_{n}^{1}(f, L, x)$ is defined by (1.8)

To prove the theorem we need the asymptotic orders of zeros of Jacobi polynomial and certain known results about Jacobi polynomials, which are as follows.

Lemma 1: Szegö ${ }^{4}$ page 169 (7.32.5) $P_{n}^{(\alpha, \beta)}(\cos \theta)= \begin{cases}\theta^{-\alpha-1 / 2} O\left(\mathrm{n}^{-1 / 2}\right) & ; c / n \leq \theta \leq \pi / 2 \\ O\left(\mathrm{n}^{\alpha}\right) & : 0 \leq \theta \leq c / n\end{cases}$

Some known results from Szegö ${ }^{4}$
$\theta_{k}^{(\alpha, \beta)}=\theta_{k}=\frac{1}{n}[k \pi+o(1)] \quad(k=1,2, \ldots \ldots, n ; n$
$=1,2, \ldots$.)
$\left|P_{n}^{(\alpha, \beta)}\left(\cos \theta_{k}\right)\right| \mathrm{k}^{-\alpha-3 / 2} n^{\alpha+2}\left(0<\theta_{k} \leq \pi / 2 ; n=1\right.$, $2, \ldots$)

Let $x=\cos \theta, x_{k}=\cos \theta_{k}(k=1,2, \ldots . n)$ $x_{0}=1$, and $x_{n+1}=-1$
Then
$\frac{c_{1}}{n} \leq \theta_{k+1}-\theta_{k} \leq \frac{c_{2}}{n}(k=0,1, \ldots n)\left(\right.$ see Vertesi $\left.{ }^{3}\right)$
with $0<c_{1}=c_{1}(\alpha, \beta)$ and $c_{2}=c_{2}(\alpha, \beta)$
and $\left|x-x_{k}\right| \sim n^{-2}\left|j^{2}-k^{2}\right| \quad$ if $x \in\left[x_{j+1}, x_{j}\right]$
($k=0,1, \ldots . n+1 ; k \neq j, j+1$ (see Natanson's G.I. ${ }^{1}$ Lemma 1 and 2)

Further

$$
\begin{align*}
& P_{n}^{(\alpha, \beta)}(-x)=(-1)^{n} P_{n}^{(\alpha, \beta)}(x) \tag{2.8}\\
& \lambda_{k, n}^{(\alpha, \beta)}=\lambda_{k} \sim\left(1-x_{k}^{2}\right)\left[P_{n}^{\prime(\alpha, \beta)}\left(x_{k}\right)\right]^{-2}
\end{align*}
$$

$$
\begin{equation*}
\lambda_{k} \sim \theta_{k}^{2 \alpha+1} n^{-1} \sim k^{2 \alpha+1} n^{-2 \alpha-2}\left(0<\theta_{k} \leq \pi-\varepsilon\right) \tag{2.10}
\end{equation*}
$$

where λ_{k} are the christoffel number (Szegö ${ }^{4}$, (15.3.14)).

If $x_{j n}=x_{j}$ be the nearest root of x, then we write

$$
\begin{equation*}
i=|k-j| \text { for } k \neq j \text { and } i=1 \text { for } k=j \tag{2.11}
\end{equation*}
$$

We often use

$$
\begin{equation*}
\left|\theta-\theta_{k}\right| \sim \frac{i}{n},(k \neq j) \tag{2.12}
\end{equation*}
$$

Proof of the theorem 1 :
For $f \in \operatorname{lip} \delta(0<\delta<1)$, we have

$$
\left|f(x)-f\left(x_{k}\right)\right| \leq M\left|x-x_{k}\right|^{\delta}
$$

Then by (1.9), we get

$$
\left\|f(x)-S_{n}^{1}(f, L, x)\right\|_{[-1,1]} \leq M n^{-1} \sum_{V=1}^{n}\left[\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} l_{k}^{(\alpha, \beta)}(x)\right]
$$

To make the analysis crystal clear, we estimate the interior sum " $\sum_{k=1}^{v} "$ as given below for α replaced by $\alpha+1$. s

Thus,

$$
\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} l_{k}^{(\alpha, \beta)}(x)=O\left\{\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} \frac{P_{v}^{(\alpha+1, \beta)}(x)}{\left\{\mathrm{P}_{v}^{\prime(\alpha+1, \beta)}\left(x_{k}\right)\right\}\left(x-\mathrm{X}_{\mathrm{k}}\right)}\right\}
$$

where $x_{k}=x_{k v}^{(\alpha+1, \beta)}$ is the $k^{\text {th }}$ zero of the $v^{\text {th }}$ polynomial $P_{v}^{(\alpha+1, \beta)}(x)$.

$$
\begin{aligned}
= & \sum_{k=j}+\sum_{\mid x-x_{k}<\epsilon \epsilon}+\sum_{(\alpha+1, \beta)}+\sum_{x-x_{k}>\epsilon}+(\alpha+1, \beta) x_{k}-x>\epsilon(\alpha+1, \beta) \\
I+I I+ & +\quad I I I+\quad I V
\end{aligned}
$$

Now, we consider I
For $k=j$, we have
$\frac{P_{v}^{(\alpha+1, \beta)}(x)-P_{v}^{(\alpha+1, \beta)}\left(x_{j}\right)}{\left(x-\mathrm{x}_{\mathrm{j}}\right)}=P_{v}^{\prime(\alpha+1, \beta)}\left(x_{j}\right)$
Then,

$$
P_{v}^{(\alpha+1, \beta)}(x)=\left(x-x_{j}\right) P_{v}^{\prime(\alpha+1, \beta)}\left(x_{j}\right)
$$

So,

$$
\left\{\text { since } P_{v}^{(\alpha+1, \beta)}\left(x_{j}\right)=0\right\} \quad I I_{1}=O\left\{\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} \frac{P_{v}^{(\alpha+1, \beta)}(x)}{P_{v}^{(\alpha+1, \beta)}\left(x_{k}\right)\left(x-x_{k}\right)}\right\}
$$

$$
\begin{aligned}
I & =O\left\{\left|x-x_{j}\right|^{\delta} . l\right\} \\
& =O\left\{\left(\frac{1}{v}\right)\right\} \\
& =O\left(v^{-\delta}\right)
\end{aligned}
$$

Now we discuss II.

$$
\begin{align*}
& =\left\{\sum_{k=1}^{v}| |^{\delta-1} \frac{\theta^{-\alpha-3 / 2} v^{-1 / 2}}{k^{-\alpha-5 / 2} v^{\alpha+3}}\right\} \text { using (2.4) and (2.6) } \\
& =O\left\{\sum_{k=1}^{v}\left|\frac{k}{v}\right|^{\delta-1} \frac{k^{-\alpha-3 / 2} v^{-1 / 2}}{v^{-\alpha-3 / 2} k^{-\alpha-5 / 2} v^{\alpha+3}}\right\} \text { (since } \theta \sim \theta_{k}=\frac{k}{v} \tag{2.13}
\end{align*}
$$

$$
\begin{align*}
& =\left\{\sum_{k=1}^{v}\left|\frac{k}{v}\right|{ }^{\delta-1} k \cdot v^{-2}\right\} \\
& =\mathrm{O}\left\{\sum_{k=1}^{v} k^{\delta} v^{-\delta-1}\right\} \\
& =\mathrm{O} \tag{2.14}
\end{align*}
$$

Case (b) : $\frac{c_{1}}{2 n} \leq \theta \leq \frac{\pi}{2}, 2 \theta_{k}<\theta$, so $\theta_{k}=O(\theta)$
Then

$$
\begin{align*}
I I_{1} & =O\left\{\sum_{k=1}^{v}|x-x k| \delta \frac{P_{v}^{(\alpha+1, \beta)}(x)}{P_{v}^{(\alpha+1, \beta)}\left(x_{k}\right)\left(x-x_{k}\right)}\right\} \\
& =O\left\{\left.\sum_{k=1}^{v}\right|_{\frac{k}{v}} \int^{\delta-1} \frac{\theta^{-\alpha-3 / 2} \mathrm{v}^{-1 / 2}}{\mathrm{k}^{-\alpha-5 / 2} \mathrm{v}^{\alpha+3}}\right\} \\
& =O(1) \quad \text { (as estimated earlier) } \tag{2.15}
\end{align*}
$$

Now, we calculate $I I_{2}$
Here $\theta<\theta_{k}$
Case (a): $0 \leq \theta \leq \frac{c_{1}}{2 n}$ Now by (2.7), $2 \theta<\theta_{k}$
So, $\quad x-x_{k}=\cos \theta-\cos \theta_{k} \leq \theta_{k}^{2}$
i.e. $\quad\left|x-x_{k}\right| \leq \frac{k 2}{v 2} \quad$ and $x-x_{k}>0$

So

$$
\begin{align*}
I I_{2} & =O\left\{\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} \frac{P_{v}^{(\alpha+1, \beta)}(x)}{P_{v}^{\prime(\alpha+1, \beta)}\left(x_{k}\right)\left(x-x_{k}\right)}\right\} \tag{2.16}\\
& =O\left\{\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta-1} \frac{v^{\alpha+1}}{k^{-\alpha-5 / 2} v^{\alpha+3}}\right\}
\end{align*}
$$

Using (2.4), (2.6) and (2.7)

$$
=O\left\{\sum_{k=1}^{v}\left|\frac{k 2}{v 2}\right|^{\delta-1} v^{-2} k^{a}\right\}
$$

$$
\begin{align*}
& =O\left\{v^{-2 \delta} \sum_{k=1}^{v} k^{2 \delta+\alpha+1 / 2}\right\} \\
& =O\left\{v^{-2 \delta} v^{2 \delta+\alpha+3 \mathrm{D}} 2\right\} \\
& =O\left\{v^{\alpha+3 / 2}\right\} \tag{2.17}
\end{align*}
$$

Case(b) : $\frac{c_{1}}{2 n} \leq \theta \leq \frac{\pi}{2}, 2 \theta \geq \theta_{k}$, but $\theta<\theta_{k}=\theta \sim \theta_{k}$

$$
\begin{align*}
& I I_{2}=O\left\{\sum_{k=1}^{v}\left|x-x_{k}\right|^{\left.\delta-1\left(\frac{\theta^{-\alpha-3 / 2} v^{-1 / 2}}{k^{-\alpha-5 / 2} v^{\alpha+3}}\right)\right\}, ~(2.4)}\right. \\
& \text { using (2.4) and (2.6) } \\
& =O\left\{\sum_{k=1}^{v} \left\lvert\, \frac{1}{d}{ }^{\delta-1} k^{-\alpha-3 / 2+\alpha+5 / 2} v^{\alpha+3 / 2-1 / 2-\alpha-3}\right.\right\} \\
& \left\{\text { since } \theta \sim \theta_{k}=\frac{k}{v}\right. \text { \} } \\
& =O\left\{\sum_{k=1}^{v} v^{-\delta-1} k^{\delta}\right\} \\
& =O(1) \tag{2.18}
\end{align*}
$$

Case (c) : $\frac{c_{1}}{2 n} \leq \theta \leq \frac{\pi}{2}$ and $2 \theta \leq \theta_{k}$. As in case (a), we get

$$
\begin{equation*}
I I_{2}=O\left\{v^{\alpha+3 / 2}\right\} \tag{2.19}
\end{equation*}
$$

On combining (2.14) to (2.19), we get

$$
\begin{equation*}
I I=O\left\{v^{\alpha+3 / 2}\right\} \tag{2.20}
\end{equation*}
$$

Now we take III

$$
\begin{align*}
I I I & =O\left\{\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} \frac{P_{v}^{(\alpha+1, \beta)}(x)}{P_{v}^{(\alpha+1, \beta)}\left(x_{k}\right)\left(x-x_{k}\right)}\right\} \\
& =O\left\{\sum_{k=1}^{v}\left|\frac{k}{v}\right|^{\delta} \frac{\theta^{-\alpha-3 / 2} v^{-1 / 2}}{k^{-\alpha-5 / 2} v^{\alpha+3} \cdot \varepsilon}\right\} \\
& =O\left\{\sum_{k=1}^{v}\left|\frac{k}{v}\right|^{\delta} k^{-\alpha-3 / 2+\alpha+5 / 2} v^{\alpha+3 / 2-1 / 2-\alpha-3}\right\} \\
& =O\left\{\sum_{k=1}^{v}\left|\frac{k}{v}\right|^{\delta} k v^{-2}\right\} \\
& =O(1) \tag{2.21}
\end{align*}
$$

At last we estimate $I V$
$I V=O\left\{\sum_{x_{k}-x>\epsilon}\left|x-x_{k}\right| \delta 1_{k}^{(\alpha+1, \beta)}\right\}$
Since $x_{k}-x>\varepsilon>0$
So $\frac{1}{x-x_{k}}<\frac{1}{\varepsilon}$
Thus it can also be estimated as in case III, that is

$$
\begin{equation*}
I V=O(1) \tag{2.22}
\end{equation*}
$$

On combining the results obtained in (2.13), (2.20), (2.21) and (2.22), we get

$$
\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} l_{k}^{(\alpha+1, \beta)}(x)=O\left(v^{-\delta}\right)+O\left(v^{\alpha+3 / 2}\right)+O(1)
$$

Now replacing $\alpha+1$ by α, we get

$$
\sum_{k=1}^{v}\left|x-x_{k}\right|^{\delta} l_{k}^{(\alpha+1, \beta)}(x)=O\left(v^{-\delta}\right)+O\left(v^{\alpha+1 / 2}\right)+O(1)
$$

Thus, we have
$\left\|f(x)-S_{n}^{1}(f, L, x)\right\|_{-1,1}=O\left(v^{-\delta}\right)+O\left(v^{\alpha+1 / 2}\right)+O(1)$
For $0<\delta<1$, under supremum norm
$\left\|f(x)-S_{n}^{1}(f, L, x)\right\|_{-1,1}=O(1)$
For all $-1 \leq \alpha \leq-1 / 2$ and β arbitrary.

This completes the proof of theorem 1.

References

1. Natanson's G.I., Two sided estimate for Lebesgue function of the Lagrange interpolation with Jacobi nodes. I_{20} Vyss Ucebn, Zaved, Mathematika. 11, 67-74 (1967). (Russion).
2. Resnikoff, Howard L. and Wells Jr., Raymond O. Wavelet Analysis, The Scalable Structure of Information. Spinger-verlog New York, Inc. (1998).
3. Vertesi, P.O. Notes on the Hermita-Fezer interpolation based on the Jacobi Abscissas. Actad. Mathematica Acad. Scientiarum Hungarica Tomus. 24, pp. 233-239 (1973).
4. SzegÖ,G. Orthogonal Polynomials. Amer. Math. Soc., Collo. Pub., Vol. XXIII $3^{\text {rd }}$ ed., New York (1967).
5. Tian, J. and Wells Jr., R. O., Vanishing Moment and Biorthogonal Coifman Wavelet System.
6. Yadav, Sarjoo Prasad., On a Banach Space Approximable by Jacobi Polynomials. Acta Math. Hungar. 98(1-2), 21-30 (2003).
