Some Results Based on Product of Homogeneous Generalized Hypergeometric Function and Modified Multivariable H-Function

KAMINI GOUR and RASHMI SINGH

B.N.P.G. College Pacific University Udaipur, Raj. (India)

(Acceptance Date 24th June, 2015)

Abstract

The aim of this chapter is to obtain some relations between Modified Multivariable H-function and Homogenous generalized hypergeometric function and various well-known polynomials. These relations are very general in nature and consequently contain a large number of few and known relation as special cases.

Introduction

The homogeneous generalized hyper-geometric function $_pB_q[\alpha_r\beta_t;z]$ was defined by Basister A.W.¹ in 1967 as

$$p q[\alpha_r; \beta_t; z] = \sum_{n=0}^{\infty} \frac{(\alpha_1)_n \dots (\alpha_p)_n}{(\beta_1)_n \dots (\beta_q)_n} \Omega(\alpha_{p+n}, \beta_{q+n}) \frac{z^n}{n!}, \qquad (1.1)$$

where Ω is he generalized modified struve function (Basister¹, 1967, p. 96) defined as

$$\Omega(a, c, z) = (2)^{-1-c} (\pi)^{-2} e^{-i\pi c} \Gamma(1-a) \Gamma(c) \Gamma(1+a-c) \times$$

$$e^{(1/2)z} \left[\left(1 - e^{2\pi i a} \right) \int_0^{(1+)} e^{(1/2)zu} (1+u)^{\alpha-1} (1-u)^{c-\alpha-1} du \right]$$

$$+\{(1-e^{2\pi ia(c-a)}\}\int_{0}^{(-1+)}e^{(1/2)zu}(1+u)^{\alpha-1}(1-u)^{c-\alpha-1}du \quad (1.2)$$

106 Kamini Gour, et al.

If $(R(\beta_q) > R(\alpha_p)$, the series (1.1) converges for all z, if $p \le q$, converges for |z| < 1, if p = q + 1, diverges for all non zero z, if p > q + 1. We shall take $2 \le p \le q + 1$.

The modified Multi-variable H-function is defined by Prasad and Singh¹⁰ on the basis of Srivastava and Panda¹¹, Prasad and Murya⁹ is as follows:

$$H_{p,q;\lfloor R;p_{1},q_{1};\ldots;p_{r},q_{r}}^{m,n;\lfloor R';m_{1},n_{1};\ldots;m_{r},n_{r}}\begin{bmatrix}z_{1}\\\vdots\\z_{r}\end{bmatrix}(a_{j};\alpha'_{j},\ldots,\alpha_{j}^{(r)})_{1,p};(e_{j};u_{j}'g_{j}',\ldots,u_{j}^{(r)}g_{j}^{(r)})_{1,R};(c_{j}',\gamma_{j}')_{1,p_{1}};\ldots;(c_{j}^{(r)},\gamma_{j}^{(r)})_{1,p_{r}}\\(b_{j};\beta'_{j},\ldots,\beta_{j}^{(r)})_{1,q};(l_{j};U_{j}'f_{j}',\ldots,U_{j}^{(r)}f_{j}^{(r)})_{1,R};(d_{j}',\delta_{j}')_{1,q_{1}};\ldots;(d_{j}^{(r)},\delta_{j}^{(r)})_{1,q_{r}}\end{bmatrix}$$

$$= \frac{1}{(2\pi\omega)^r} \int_{L_1} \dots \int_{L_r} \Phi_1(\xi_1) \dots \Phi_r(\xi_r) \psi(\xi_1, \dots, \xi_r) z_1^{\xi_1} \dots z_r^{\xi_r} d\xi_1 \dots d\xi_r$$
 (1.3)

where

$$\Phi_{\mathbf{i}}(\xi_{i}) = \frac{\prod_{j=1}^{m_{i}} \Gamma(d_{j}^{(i)} - \delta_{j}^{(i)} \xi_{i}) \prod_{j=1}^{n_{i}} \Gamma(1 - c_{j}^{(i)} - \gamma_{j}^{(i)} \xi_{i})}{\prod_{j=m_{i}+1} \Gamma(1 - d_{j}^{(i)} + \delta_{j}^{(i)} \xi_{i}) \prod_{j=n_{i}+1} \Gamma(c_{j}^{(i)} - \gamma_{j}^{(i)} \xi_{i})} (\mathbf{i} = 1, 2, ..., \mathbf{r})$$
(1.4)

$$\Psi(\xi_i,\ldots,\xi_r)_{\equiv}$$

$$\frac{\prod_{j=1}^{m_{i}} \Gamma\left(b_{j} - \sum_{i=1}^{r} \beta_{j}^{(i)} \xi_{i}\right) \prod_{j=1}^{n} \Gamma\left(1 - a_{j} + \sum_{i=1}^{r} \alpha_{j}^{(i)} \xi_{i}\right) \prod_{j=1}^{|R'|} \Gamma\left(e_{j} + \sum_{i=1}^{r} u_{j}^{(i)} g_{j}^{(i)} \xi_{i}\right)}{\prod_{j=m+1}^{p} \Gamma\left(a_{j} - \sum_{i=1}^{r} \alpha_{j}^{(i)} \xi_{i}\right) \prod_{j=n+1}^{q} \Gamma\left(1 - b_{j} + \sum_{i=1}^{r} \beta_{j}^{(i)} \xi_{i}\right) \prod_{j=1}^{|R|} \Gamma\left(l_{j} + \sum_{i=1}^{r} U_{j}^{(i)} f_{j}^{(i)} \xi_{i}\right)}$$

$$(1.5)$$

The multiple integral (1.5) converges absolutely if

$$|argz_i| < \frac{1}{2}U_i\pi, (i = 1, 2, ..., r)$$

Where
$$U_i = \sum_{j=1}^{m} \beta_j^{(i)} - \sum_{j=m+1}^{q} \beta_j^{(i)} + \sum_{j=1}^{n} \alpha_j^{(i)} - \sum_{j=n+1}^{p} \alpha_j^{(i)} \sum_{j=1}^{m} \delta_j^{(i)} - \sum_{j=1}^{m} \beta_j^{(i)} \sum_{j=1}^{m} \beta_j^{(i)} = 0$$

$$\sum_{j=m_{i}+1}^{q_{i}} \delta_{j}^{(i)} \sum_{j=1}^{r} \gamma_{j}^{(i)} - \sum_{j=n_{i}+1}^{p_{i}} \gamma_{j}^{(i)} + \sum_{j=1}^{R'} g_{j}^{(i)} - \sum_{j=1}^{R} f_{j}^{(i)} > 0 \quad (i=1,2...,r)$$
(1.4)

2. Required Results

$$(i) \int_{0}^{1} C_{n}^{\lambda} (1 - 2y^{2}) (1 - y^{2})^{\lambda - 1/2} y^{2\lambda + 2r + 2u} dy$$

$$= \frac{\sqrt{\pi}}{2^{2\lambda} \Gamma(d)} \frac{\Gamma(n + 2\lambda)(-1)^{n}}{n!} \frac{\Gamma(u + r + 1)\Gamma(u + r + \lambda + \frac{1}{2})}{\Gamma(u + r - n + 1)\Gamma(U + r + n + 2\lambda + 1)}$$
(2.1)

where $\lambda + r + u > -1/2$ and $C_n^{\lambda}(x)$ is an Ultraspherical polynomial defined in⁵ as

$$C_n^{\lambda}(x) = \frac{(2\upsilon)_n p_n^{\left(\upsilon - \frac{1}{2},\upsilon - \frac{1}{2}\right)}(x)}{(\upsilon + 1/2)_n}, \text{ where } p_n^{(\alpha,\alpha)} \text{ is the well known Jacobi polynomial also}$$

discussed in⁵

(ii) The following recurrence relations will be used in our investigations given in⁵

$$= (n+1)C_{n+1}^{\lambda}(x) = 2(n+\lambda)xC_n^{\lambda}(x) - (n+2\lambda-1)C_{n-1}^{\lambda}(x)$$
 (2.2)

$$= 2\lambda(1-x^2)C_{n-1}^{\lambda+1}(x) = (n+2\lambda-1)C_{n-1}^{\lambda}(x) - nxC_n^{\lambda}(x)$$
 (2.3)

(iii) The following recurrence relations will be also used in our investigation given in⁶⁻⁸.

$$\frac{1}{2}(2+\alpha+\beta+2n)(x+1)P_n^{(\alpha,\beta+1)}(x)
= (n+1)P_{n+1}^{(\alpha,\beta)}(x) + (1+\beta+n)P_n^{(\alpha,\beta)}(x)$$
(2.4)

$$(\alpha+\beta+2n)P_n^{(\alpha,\beta-1)}(x) = (\alpha+\beta+n)P_n^{(\alpha,\beta)}(x) + (\alpha+n)P_{n-1}^{(\alpha,\beta)}(x), \quad (2.5)$$

$$(x+1)P_n^{(\alpha,\beta+1)}(x) + (1-x)P_n^{(\alpha+1,\beta)}(x) = 2P_n^{(\alpha,\beta)}(x), \qquad (2.6)$$

(iv)
$$\int_{0}^{1} P_{n}^{\alpha_{1}\beta} (2y^{2} - 1)(1 - y^{2})^{\alpha} y^{2\sigma + 1} dy = \frac{\frac{1}{2}\Gamma(\sigma + 1)\Gamma(\alpha + n + 1)\Gamma(\alpha - \beta + 1)}{\frac{1}{2}\Gamma(\sigma - \beta - n + 1)\Gamma(\alpha + \sigma + n + 2)}$$
(2.7)

Where $P_n^{\alpha,\beta}(x)$ is Jacobi polynomial and $\{(2\sigma+1)>-1)\}$.

Proof: On putting $x = 1 - 2y^2$ in the result of Gradshteyn and Ryzhik ([12], 4, p. 834) we get the result (2.1) after little simplification.

108 Kamini Gour, et al.

Also we put $2y^2 - 1 = x$ in the result of Gradshteyn and Ryzhik ([12], 3,p.847) we get the result (2.7) after little simplification.

3. Main Results

First Integral

$$\int_{0}^{1} C_{n}^{\lambda} (1 - 2y^{2}) (1 - y^{2})^{\lambda - 1/2} y^{2\lambda + 2r} p^{B} q^{\left[\alpha_{s}; \beta_{t}; (zy)^{2}\right]} \times H_{p,q;|R:p_{1},q_{1};...;p_{r},q_{r}}^{m,n;|R':m_{1},n_{1};...;m_{r},n_{r}}$$

$$\begin{bmatrix} (xy^{2})^{\sigma_{1}} | (a_{j}; \alpha'_{j}, ..., \alpha_{j}^{(r)})_{1,p} : (e_{j}; u'_{j}g'_{j}, ..., u'_{j}g'_{j})_{1,R} : (c'_{j}, \gamma'_{j})_{1,p_{1}}; ...; (c_{j}^{(r)}, \gamma_{j}^{(r)})_{1,p_{r}} \\ (b_{j}; \beta'_{j}, ..., \beta_{j}^{(r)})_{1,q} : (l_{j}; U'_{j}f'_{j}, ..., U'_{j}f'_{j})_{1,R} : (d'_{j}, \delta'_{j})_{1,q_{1}}; ...; (d_{j}^{(r)}, \delta_{j}^{(r)})_{1,q_{r}} \end{bmatrix}$$

$$dy$$

$$=\frac{\Gamma(n+2\lambda)\sqrt{\pi}(-1)^n}{4^{\lambda}n!\,\Gamma(\lambda)}\sum_{k=0}^n\frac{(\alpha_1)_k\ldots\left(\alpha_p\right)_k}{(\beta_1)_k\ldots\left(\beta_q\right)_k}\Omega\left(\alpha_{p+k},\beta_{q+k},0\right)\frac{z^{2k}}{k!}\times$$

$$H_{P+2,Q+2:|R:p_{1},q_{1};...;p_{r},q_{r}}^{m,n+2:|R':m_{1},n_{1};...;m_{r},n_{r}}\begin{bmatrix} (x)^{\sigma_{1}} \\ \vdots \\ (x)^{\sigma_{r}} \end{bmatrix} (-k-r,\sigma_{1}\ldots\sigma_{r},1), (\frac{1}{2}-k-r-\lambda,\sigma_{1}\ldots\sigma_{r},1), (\frac{1}{2}-k-r-\lambda,$$

$$(a_{j}; \alpha'_{j}, \dots, \alpha_{j}^{(r)})_{1,p} : (e_{j}; u'_{j}g'_{j}, \dots, u_{j}^{(r)}g_{j}^{(r)})_{1,R} : (c'_{j}, \gamma'_{j})_{1,p_{1}}; \dots \dots ; (c_{j}^{(r)}, \gamma_{j}^{(r)})_{1,p_{r}}$$

$$(d'_{j}, \delta'_{j})_{1,q_{1}} : \dots ; (d_{j}^{(r)}, \delta_{j}^{(r)} :)_{1,q_{r}} : (-k - r + n, \sigma_{1} \dots \sigma_{r}; 1), (-k - r - n - 2\lambda, \sigma_{1} \dots \sigma_{r}, 1)$$

$$(3.1)$$

Where the following conditions are satisfied¹³

(i) Modified Multivariable h-function must satisfy the conditions of convergence given by (1.6)

(ii)
$$R(\beta_q) > R(\alpha_p) for 0 \le p \le q + 1$$

(iii)
$$(\lambda + r) > -1/2$$
.

Second Integral:

$$\int_{0}^{1} p^{B} q^{\left[\alpha_{s};\beta_{t};(zy)^{2}\right](1-y^{2})^{\lambda-\frac{1}{2}}y^{2r} \times H_{p,q:\mid R:p_{1},q_{1};...;p_{r},q_{r}}^{m,n:\mid R':m_{1},n_{1};...;p_{r},q_{r}}$$

$$\begin{bmatrix} (xy^2)^{\sigma_1} \\ \vdots \\ (xy^2)^{\sigma_r} \\ (b_j; \beta'_j, \dots, \beta_j^{(r)})_{1,p} \colon (\mathbf{e_j}; \mathbf{u'_j} \mathbf{g'_j}, \dots, \mathbf{u'_j}^{(r)} \mathbf{g'_j})_{1,R} \colon (\mathbf{c'_j}, \gamma'_j)_{1,p_1}; \dots; (\mathbf{c_j}^{(r)}, \gamma_j^{(r)})_{1,p_r} \\ (b_j; \beta'_j, \dots, \beta_j^{(r)})_{1,q} \colon (\mathbf{l_j}; \mathbf{U'_j} \mathbf{f'_j}, \dots, \mathbf{U'_j}^{(r)} \mathbf{f'_j})_{1,R} \colon (\mathbf{d'_j}, \delta'_j)_{1,q_1}; \dots; (\mathbf{d_j}^{(r)}, \delta_j^{(r)})_{1,q_r} \end{bmatrix} dy$$

$$=\frac{\sqrt{\pi}}{\Gamma(\lambda)}\sum_{n=0}^{\infty}\frac{\Gamma(n+2\lambda)(-1)^n}{n!}\sum_{k=0}^{\infty}\frac{(\alpha_1)_k\ldots\left(\alpha_p\right)_k}{(\beta_1)_k\ldots\left(\beta_q\right)_k}\Omega\left(\alpha_{p+k},\beta_{q+k},0\right)\frac{z^{2k}}{k!}$$

$$H_{P+2,Q+2:|R:p_{1},q_{1};...;p_{r},q_{r}}^{m,n+2:|R':m_{1},n_{1};...;m_{r},n_{r}}\begin{bmatrix} (x)^{\sigma_{1}} \\ \vdots \\ (x)^{\sigma_{r}} \end{bmatrix} (-k-r,\sigma_{1}\ldots\sigma_{r},1), \left(\frac{1}{2}-k-r-\lambda,\sigma_{1}\ldots\sigma_{r},1\right), (b_{j};\beta'_{j},\ldots,\beta'_{j})_{1,q}; (b_{j};U'_{1}f'_{1},\ldots,U'_{1}f'_{1})_{1,R};$$

$$(a_{j};\alpha'_{j},...,\alpha_{j}^{(r)})_{1,p}:(e_{j};u'_{j}g'_{j},...,u_{j}^{(r)}g_{j}^{(r)})_{1,R}:(c'_{j},\gamma'_{j})_{1,p_{1}};.....;(c_{j}^{(r)},\gamma_{j}^{(r)})_{1,p_{r}} \\ (d'_{j},\delta'_{j})_{1,q_{1}}:...;(d_{j}^{(r)},\delta_{j}^{(r)})_{1,q_{r}}:(-k-r+n,\sigma_{1}...\sigma_{r};1),(-k-r-n-2\lambda,\sigma_{1}...\sigma_{r},1) \end{bmatrix} (3.2)$$

The conditions of convergence are as below

- (i) Modified Multivariable h-function must satisfy the conditions of convergence given by (1.6)
- (ii) $R(\beta_q) > R(\alpha_p) for 0 \le p \le q + 1$,
- (iii) r > -1/2.

Proof: The integral (3.1) can be established by expressing the modified Multivariable H-function as given in (1.3) and the homogeneous generalized function $p = q [\alpha_s; \beta_t; (zy)^2]$ as defined by (1.1) and changing the order of integration we get

$$\int_{0}^{1} C_{n}^{\lambda} (1 - 2y^{2}) (1 - y^{2})^{\lambda - \frac{1}{2}} y^{2\lambda + 2r} p^{B} q^{[\alpha_{r}; \beta_{t}; (zy)^{2}]}$$

$$\times H_{p,q; |R:p_{1},q_{1}; \dots; p_{r},q_{r}}^{m,n; |R':m_{1},n_{1}; \dots; m_{r},n_{r}}$$

$$\begin{bmatrix} (xy^2)^{\sigma_1} \\ \vdots \\ (xy^2)^{\sigma_r} \\ \end{bmatrix} (a_j; \alpha'_j, \dots, \alpha_j^{(r)})_{1,p} : (e_j; u_j^{'}g_j^{'}, \dots, u_j^{(r)}g_j^{(r)})_{1,R} : (c_j^{'}, \gamma_j^{'})_{1,p_1}; \dots; (c_j^{(r)}, \gamma_j^{(r)})_{1,p_r} \\ \vdots \\ (b_j; \beta'_j, \dots, \beta_j^{(r)})_{1,q} : (l_j; U_j^{'}f_j^{'}, \dots, U_j^{(r)}f_j^{(r)})_{1,R} : (d_j^{'}, \delta_j^{'})_{1,q_1}; \dots; (d_j^{(r)}, \delta_j^{(r)})_{1,q_r} \end{bmatrix}$$

110 Kamini Gour, et al.

$$\begin{split} &= \sum_{k=0}^{\infty} \frac{(\alpha_1)_k \dots \left(\alpha_p\right)_k}{(\beta_1)_k \dots \left(\beta_p\right)_k} \Omega \Big(\alpha_{p+k}, \beta_{p+k}, 0\Big) \frac{(z)^{2k}}{k!} \\ &\qquad \times \frac{1}{(2\pi\omega)^r} \int_{L_1} \dots \int_{L_r} \Phi_1 \left(\xi_1\right) \dots \Phi_r(\xi_r) \psi(\xi_1, \dots, \xi_r) \\ &\qquad \left\{ \int_0^1 C_n^{\lambda} (1-2y^2) \left(1 - y^2\right)^{\lambda-1/2} y^{2\lambda+2r+2k+2(\sigma_1 \xi_1, \dots, \sigma_r \xi_r)} dy \right\} d\xi_1 \dots d\xi_r \end{split}$$

Now we use the result (2.1) and get the result (3.1) after a little simplification. To calculate the integral (3.2) we use the following relation

$$(1 - 2xh + h^2)^{-\lambda} = \sum_{n=0}^{\infty} C_n^{\lambda}(x)h^n$$

put $x=1-2y^2$ in the above relation and then multiplying by

$$\frac{B}{p} q[\alpha_s;\beta_t;(zy)^2] y^{2\lambda+2r} (1-y^2)^{\lambda-1/2} H_{p,q:|R:p_1,q_1;\dots;p_r,q_r}^{m,n:|R':m_1,n_1;\dots;m_r,n_r}$$

$$\begin{bmatrix} (xy^2)^{\sigma_1} \\ \vdots \\ (xy^2)^{\sigma_r} \\ (b_j; \beta'_j, ..., \beta_j^{(r)})_{1,p} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f_j^{(r)})_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1,R} \vdots \\ (l_j; U'_j f'_j, ..., U_j^{(r)} f'_j, ..., U_j^{(r)} f'_j)_{1$$

on both sides and then integrating with respect to y between the limits 0 to 1 and using the results (2.1) we get the result (3.2).

Special Cases:

(i) If we put m = |R'| = |R| = n = p = q = 0 in (3.1) the Modified Multivariable H-function degenerates into fox's H-function we get the result.

$$\int_{0}^{1} C_{n}^{\lambda} (1-2y^{2}) (1-y^{2})^{\lambda-1/2} y^{2\lambda+2r} p^{B} q^{\left[\alpha_{s};\beta_{t};(zy)^{2}\right]} H_{p,q:|R:p_{1},q_{1};...;p_{r},q_{r}}^{m,n:|R':m_{1},n_{1};...;m_{r},n_{r}}$$

$$\begin{split} &\begin{bmatrix} (xy^2)^{\sigma_1} \\ \vdots \\ (xy^2)^{\sigma_r} \\ \end{bmatrix} \begin{bmatrix} (a_j;\alpha'_j,\ldots,\alpha_j^{(r)})_{1,p} \colon (e_j;u'_jg'_j,\ldots,u_j^{(r)}g_j^{(r)})_{1,R'} (c'_j,\gamma'_j)_{1,p_1} ; \ldots ; (c_j^{(r)},\gamma_j^{(r)})_{1,p_r} \vdots \\ (b_j;\beta'_j,\ldots,\beta_j^{(r)})_{1,q} \colon (l_j;U'_jf'_j,\ldots,U_j^{(r)}f_j^{(r)})_{1,R} \colon (d'_j,\delta'_j)_{1,q_1} ; \ldots ; (d_j^{(r)},\delta_j^{(r)})_{1,q_r} \end{bmatrix} \\ &= \frac{\Gamma(n+2\lambda)\sqrt{\pi}(-1)^n}{4^{\lambda}n!} \sum_{k=0}^{\infty} \frac{(\alpha_1)_k \ldots (\alpha_p)_k}{(\beta_1)_k \ldots (\beta_q)_k} \Omega \Big(\alpha_{p+k},\beta_{q+k},+0\Big) \frac{z^{2k}}{k!} H_{2,2:p_1,q_1;\ldots;p_r,q_r}^{0,2:m_1,n_1;\ldots;m_r,n_r} \\ &\vdots \\ (xy^2)^{\sigma_1} \Big|_{(d'_j,\delta'_j)_{1,q_1};\ldots;(d_j^{(r)},\delta_j^{(r)})_{1,q_r} (-k-r-n,\sigma_1,\ldots\sigma_r), (-k-r-n,\sigma_1,\ldots\sigma_r)}^{0,2} \Big] \end{split}$$

(i) If we put m = |R'| = |R| = n = p = q = 0 in (3.2) the Modified Multivariable H-function reduces to well-known Fox's H-function we get the result

$$\begin{split} &\int_{0}^{1} p^{B} q[\alpha_{s};\beta_{t};(zy)^{2}](1-y^{2})^{\lambda-\frac{1}{2}}y^{2r} \times H_{p,q;|R';m_{1},n_{1};...;p_{r},q_{r}}^{m,n;|R':m_{1},n_{1};...;p_{r},q_{r}} \\ &\left[\sum_{i=1}^{(xy^{2})^{\sigma_{1}}} \left| (\alpha_{j};\alpha'_{j},...,\alpha_{j}^{(r)})_{1,p}; (e_{j};u'_{j}g'_{j},...,u_{j}^{(r)}g'_{j})_{1,R}; (c'_{j},\gamma'_{j})_{1,p_{1}};...; (c_{j}^{(r)},\gamma_{j}^{(r)})_{1,p_{r}} \right] dy \\ &= \frac{1}{(xy^{2})^{\sigma_{r}}} \left| (b_{j};\beta'_{j},...,\beta_{j}^{(r)})_{1,q}; (l_{j};U'_{j}f'_{j},...,U'_{j}^{(r)}f'_{j}^{(r)})_{1,R}; (d'_{j},\delta'_{j})_{1,q_{1}};...; (d_{j}^{(r)},\delta_{j}^{(r)})_{1,q_{r}} \right| dy \\ &= \frac{1}{(xy^{2})^{\sigma_{r}}} \sum_{n=0}^{\infty} \frac{\Gamma(n+2\lambda)(-1)^{n}}{n!} \sum_{k=0}^{\infty} \frac{\alpha_{1}}{(\beta_{1})_{k}} ... (\alpha_{p})_{k} \alpha(\alpha_{p+k},\beta_{q+k},0) \frac{z^{2k}}{k!} \\ &H_{2,2:p_{1},q_{1};...;p_{r},q_{r}}^{0,2:m_{1},n_{1};...;p_{r},q_{r}} \left[(x)^{\sigma_{1}} \left| (-k-r,\sigma_{1}...\sigma_{r};1), (\frac{1}{2}-k-r-\lambda,\sigma_{1}...\sigma_{r};1) \right| (d'_{j},\delta'_{j})_{1,q_{1}};...; (d_{j}^{(r)},\delta_{j}^{(r)})_{1,q_{r}}(-k-r+n,\sigma_{1},...\sigma_{r};1) \right] \\ &(c'_{j},\gamma'_{j})_{1,p_{1}};...;(c_{j}^{(r)},\gamma_{j}^{(r)})_{1,p_{r}} \left[(-k-r,\sigma_{1}...\sigma_{r};1) \right] \end{aligned}$$

References

- A.W. Basister, Transcendental function satisfying non-homogeneous linear differential equations. The Macmillan Company, New York (1967).
- 2. R.G. Buschman and H.M. Srivastava, J.
- Phys. A: Math. Gen., 23, 4707-4710 (1990).
- 3. C. Fox, The G. and H. functions as symmetrical Fourier Kernels, *Trans. Amer: Math. Soc.*, 98, 395-429 (1961).
- 4. A.A. Inayat-Hussain, New properties of hypergeometrical series derivable from

- Feynman integrals II,A generalization of the H-function, *J. Phys. A. Math. Gen.*, 20, 4119-4128 (1987).
- E.D. Rainville, Special Functions. Macmilan, New York. 1960; Reprinted by Chelsea Publ. Co. Bronx, New York (1971).
- 6. A.K. Rathie, Le Mathemathiche, Fasc, II, 52, 297-310 (1997).
- 7. A. *et al.* Higher\Transcendental Functions, Vol. I, McGraw Hill, New York (1953).
- 8. A. *et al.*, Erdélyi, Tables of Integral Transforms Vol. II, McGraw Hill, New York (1954).
- 9. Y.N. Prasad, and R.P Maurya, Basic properties of generalized multiple L-H transform, *Vijnana Prishad Anusandhan*

- Patrika, 22, No 1, (Jan 1979), 74.
- 10. Y.N. Prasad, and A.K. Singh, Basic properties of the transform involving an H-function of r-variable as kernel, *Indian Acad.*, *Math.*, 4 No.2, 109-115 (1982).
- 11. Srivastava, H.M. and Panda, R., Expansion theorems for H-function of several complex variables, *J. Reine. Angew. Math.* 288, 129-145 (1976).
- 12. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products (1994).
- 13. A.A. Inayat-Hussain, New properties of hypergeometrical series derivable from Feynman integrals II, A generalization of the H-function, *J. Phys. A. Math. Gen.*, 20, 4109-4117 (1987).