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Abstract

A good number of generating functions involving Jacobi,
modified Jacobi polynomials have been derived by various researchers
using Weisner’s group-theoretic method. In this paper, we have studied

, a different modification of Jacobi polynomials by the same
method of Weisner and obtained some novel results by suitable
interpretations of the index, n and the parameter,  simultaneously.
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1. Introduction

The Jacobi polynomial,  defined1 by:

    (1)

is a solution of the following ordinary differential equation:

  (2)
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          In this paper we consider , 
a modification of  satisfying the
following ordinary  differential equation:

  [ –  – n -(2 +  +  + n) x]

  + n (1 +  +  + 2n) y = 0.                        (3)

The aim at writing this paper is to
investigate some novel generating functions of

, a modification of the Jacobi
polynomials by using Weisner’s2-4 group-
theoretic method which is lucidly presented in
the monograph “obtaining generating functions”
by E.B. McBride5. For previous works on  Jacobi
polynomials, one may refer to the works6-17.
The main results of this investigation are given
in section-3.

2 Group-Theoretic Discussion:

Replacing   by  ,   by y  ,  n  by

z   and  by by  u (x,y,z)  in  (3),

we get the following partial differential
equation:

          

          (4)

Thus,    is a

solution of (4), since    is a solution
of (3).

Let us now seek two first order linear
partial differential operators A3 and A4 such that

      (5)

and

      (6)

Using (5) and the relation (18):

 (7)

We easily obtain

       

Such that

  

Similarly using (6) and the relation18:
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(8)
We obtain

 

 
Such that

       
To find the group of operators, let us write

 ,      
Then we have the following commutator
relations:

 ;        ;

 ; ;
; ,

where
 

From  the above commutator relations we can
easily state the following theorem:

Theorem: The  set of operators  {1,
Ai :  i = 1,2,3,4}, where  1 stands for the identity

operator, generates a Lie algebra   .

Now the partial differential operator  L, given
by

 

 

 

Can be expressed as follows:

 (9)

It can be easily verified that (1+x) L commutes
with   {1, Ai  :  i = 1,2,3,4}  i.e.

    (10)

The extended form of the groups generated
by Ai (i=1,2,3,4) are given below:

   (11)

  (12)

 

                                                                              (13)

    

         (14)

Where all ai (i=1,2,3,4) are arbitrary constants.

Now from the above, we have
 

 



  ,

        (15)

3   Generating  Functions:

From the above discussion, we see that    is a solution of the systems:
            L u = 0                                         L u = 0                                            L u = 0
       (A1 - ) u = 0 ;                             (A2  - n) u = 0 ;             (A1 + A2 –  – n) u = 0 .
From (10), we easily get

  
where

 
Therefore,   is annulled by    (1+x) L .

By setting   in  (15)  and  replacing  f(x,y,z)  by  , we  get

   

 

  ×  
On  the  otherhand

        

 

 
Equating  the  above  two  results,  we  get

 

×  

                 
 (16)

Which  does  not  seem  to  have  appeared  in  the  earlier  works.  Now  we  consider
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the following  three  cases:
Case 1: By setting a3=1 ; a4=0 and putting y2z-1=-t in (16), we get

 (17)

Case  2: By setting a3=0 ; a4=1 and  putting 2 y2z=t in  (16),  we  get

 (18)

Sub  Case :  Putting  n = 0  in  (18),  we  get

Finally,  using  the  symmetry  relation  [1]:

 
and then simplifying, we get

which  is  well  known  Feldhim's19  formula  and  is  also  derived  by  W. A. Alsalam20,
V. K. Verma21  by  different  methods.

Case  3: By  setting    and  putting      in  (16),  we  get
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