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Abstract

 The purpose of the present paper is to study properties of
Pseudo-conformal mapping hyperdistribution of real hypersurfaces of
almost hyperbolic Hermitian manifold.
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1. Introduction

Definition: Let us consider a diffe-
rentiable manifold M of class C  endowed
with a tensor field F of type (1, 1) such that

F~ 2 = I, i.e. . . .or         h
kF~ k

iF~  = h
i ,

and        g (FX, FY) + g(X, Y) = 0

Then we say that g is compatible with
structure F and (F, g) is called almost
hyperbolic Hermitian structure and the
manifold M with this structure is called almost
hyperbolic Hermitian manifold.

Summation Convention: In the sequel,
manifolds, tensor fields, connections and
mappings we consider are assumed to be
differentiable and of class C unless otherwise
stated and the indices a, b, c, d, e, ·· · run over
the range {1, 2, ··· 2n + l}, the summation
convention being used with respect to this
system of indices.

Let there be given, on a manifold M
of odd dimension 2n + l (3), a tensor field f of
type (1, 1), a vector field ξ and a 1-form θ
satisfying
(1.1)  f 2=I-θ  ξ,  f (ξ)=0,   θ (f)=0,  θ (ξ) = 1,
I being the identity tensor field of type (1, 1), or

(1.2)      , a
b

e
b

a
e ff 

   ,1,0,0  e
e

e
be

ea
e ff 

fb
a, ξa and θb denoting components of f, ξ and

θ respectively. Then the triple (f, ξ, θ) is called
an almost para contact structure in M.

            We define tensor fields S of type (1,
2), G of type (0, 2), T of type (0, 2), P of type
(1, 1) and Q of type (0, 1) as those with
components
(1.3) ( e

bc
a

ce
e

b
a

be
e

c
a
cb fffffS 

,)() a
cbbc

a
e

e
cb ff  

(1.4) ,)( ebbe
e
ccb fG  
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(1.5) ,bccbcb GGT 

(1.6) ,])()([ a
b

e
b

e
b

a
e

a
be

ea
b fffP  

(1.7) ,])([ e
e

bbe
e

bQ  

respectively, where   denotes the operator
of covariant differentiation with respect to an
arbitrary symmetric affine connection in M.
We easily see that these tensor fields are
independent of the symmetric connection  used
to define them. Then S and G are respectively
called the torsion tensor and the Levi tensor
of (f, ξ, θ). The following propositions are well
known4:

(A1)  S = 0 implies T = 0,  P = 0  and  Q = 0;
(A2)  P = 0 implies     Q = 0.

When the tensor field S vanishes
identically, the almost para contact structure
(f, ξ, θ) is said to be normal.

We now state an elementary lemma
for later use. Let V be a vector space over
real number field with almost hyperbolic
Hermitian structure F. That is, F: V  V is a
linear transformation satisfying F2 = I and g
(FX, FY) + g(X, Y) = 0. Then V is necessarily
even-dimensional, say dimV = 2n + 2(4). Take
arbitrarily a (2n + l) -dimensional subspace W
of V. Then FW is also (2n + l)-dimensional.
We can now state

Lemma 1.1: Put D = W FW and N
= D - FW. Then FD = D, FNW, V = W +
FW, dim D = 2n, N= {axo + y/ aR, aO,
yD), x0 being a fixed element of N, and any
element x of N is uniquely represented as x =
axo + y (aR, yD).

The subset N appearing in Lemma 1.1
has two connected components, each of which
is homeomorphic to a Euclidean space of
dimension 2n + l. The subset T is called the
affine normal space to W in the vector space
V with almost hyperbolic Hermitian structure
F.

2. Hypersurfaces of almost hyperbolic
Hermitian manifold:

Let M be a almost hyperbolic Hermitian
manifold of real dimension 2n + 2(4) with
almost hyperbolic Hermitian structure F,
where F is a tensor field of type (1, 1) in M
satisfying  F

~ 2 = I, i.e. . . .

(2.1a) h
kF~ k

iF~  = h
i ,

and

(2.1b)    g (FX, FY) + g(X, Y)=0,    h
iF~ denoting

components of  F~ .

Let there be given a hypersurface M

immersed in  M~ . For each point P of M, denote

the tangent space to  M~  and that to M at P by

TP( M~ ) and TTP(M) respectively. Then the

subspace DP=TP{M) F~ TP(M) is 2n-dimen-
sional and hence the correspondence P DP

defines a distribution D of dimension 2n in M.
Since FD = D, we can define a tensor field J

of type (1, 1) in D by JX = F~ X, X being an

arbitrary vector field belonging to D. Then  F~ 2

= I implies J2 =  ID, where ID denotes the
identity tensor field of type (1, 1) in D. Thus
the D is called a hyperdistribution with almost
hyperbolic Hermitian structure J in M and said
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to be induced in M from  F~  by the immersion3.

Since the tangent space TP( M~ ) is a
vector space with almost hyperbolic Hermitian

structure  F~ , by Lemma 1.1 the subspace

TP(M) of TP( M~ ) has its affine normal space

NP. We call N =  U
MP

NP the affine normal

bundle to the hypersurface M.

Since NP has two connected compo-
nents, each of which is homeomorphic to a
Euclidean space, N has a global cross-section
if M is orientable.

Let  U  be a coordinate neighborhood

of  M~  such that any connected component U

of  U M is a coordinate neighborhood of M.
In the sequel by U we mean such a coordinate
neighborhood of M. Take a local cross-section
C of the affine normal bundle N over U and
call it a local affine normal to M in U. Then by

Lemma 1.1  F~ C is tangent to M in U and
hence

(2.2)   =  F~ C

is a non-vanishing vector field in U. Next, for
any vector field X in M, we can decompose
 F~ X uniquely as

(2.3)  F~ X= fX + (X) C,

where fX is tangent to M. Thus f and  are a
tensor field of type (1, 1) and a 1-form in U

respectively. Applying  F~  to (2.3) and using
 F~ 2 = I, we find     X = (f2X+ (X)) +  (fX)
C, which implies

(2.4)      f 2 = I - θ   ξ,             θ (f) = 0.

If we put X = in (2.3), we obtain  F~ = f () +
θ () C. On the other hand (2.2) gives
 F~ = C. Hence we get

(2.5)      f (ξ) = 0,     θ (ξ) = l.

Equations (2.4) and (2.5) show that
the triple (f, ξ, θ) is an almost contact structure
in U, which is called an almost contact
structure induced in M by an affine normal C
in U. A vector field X in M belongs to D if and

only if  F~ X belongs to D. Thus, because of
(2.3), X belongs to D if and only if θ (X) = 0.
Hence the distribution D is defined by θ = 0 in
U. Therefore the almost contact structure (f,
ξ, θ) is associated with the hyperdistribution
D with complex structure e 3-9.

We now take another affine normal
C to M in U. Then by Lemma 1.1 we have

(2.6)       C  = - 
 


1

 (C + A),

where  is a non-vanishing function and A a
vector field being tangent to M and belonging
to D,  and A being defined in U. Thus we
have8-14

(2.7)   f = - f + θ   ξ,      = -
 


1

 (ξ - fA),

  =  θ,



where ( f ,   ,    ) is the almost contact
structure induced in M by (2.3) and (2.5), C

being replaced by  C . The change (2.7) of
almost contact structures has been discussed
in3 and is called a change of almost contact
structures associated with D4-7.

3. Induced affine connections :

We now assume that the ambient

manifold  M~  is a complex manifold of complex
dimension n + l ( 2) with almost hyperbolic

Hermitian structure  F~ . It is well known that
there is a symmetric affine connection  ~

satisfying   ~  F~ = 0, i. e.

(3.1)                 j~  h
iF~ = 0

In the sequel we fix this affine connection  ~ .

Consider a real hypersurface M

immersed in  M~ and a coordinate neighborhood
U of M such that U is a connected component

of  MU  ,  U  being a coordinate Neighborhood

of  M~ . Let (xh) and (ya) be coordinates in  U
and in U respectively7-11.

We assume that M is represented in  U  by

(3.2)                   xh = xh(ya).

Take an affine normal C to M in U and put

(3.3) Bb
h =   xh/  ya

in U. Then Bb = Bb
h  /  xh  and C = Ch  /

  xh  form an affine (2n+2)-frame along U.

Thus on putting
   1, 








 hh
b

i

a
i CB

C
B

we have

(3.4)   a
b

a
i

i
b BB  ,  0ia

i CB ,  1i
iCC ;

            h
ii

he
i

h
e CCBB  .

(3.5)

Thus ia
i

a xBB  and i
i xCC   form

a coframe dual to {Bb, C} along U.

The affine connection    induced in

U from  h
jiT~  with respect to the affine  normal

C has, by definition, components given by

(3.6)    a
h

i
b

j
c

h
ji

h
bc

a
cb BBBTBT ~

where  b
b y /  and  h

jiT~ denote components

of  ~  in  U~ . Since  ~  is symmetric, i.e . . . .

since   h
ij

h
ji TT ~~  is also symmetric, i.e. . . .

 a
bc

a
cb TT  . Thus if we define the so- called

vander Waerden- Bortolott i covar iant

derivative of  h
bB  along M by

(3.7)  h
a

a
cb

i
b

j
c

h
ji

h
bc

h
bc BTBBTBB  ~

in U, then we have    0 a
b

h
bc BB  0, which

shows that  h
bc B  is of the form

(3.8)  h
cb

h
bc ChB   ,

196 Sushil Shukla



where  
cbh  are defined by

(3.9)    h
i
b

j
c

h
ji

h
bcbccb CBBTBhh ~

and are called components of the covariant
second fundamental tensor h of M with
respect to the affine normal C, h being of type
(0, 2).

        Differentiating  a
b

a
h

h
b BB  covariantly

along M and using (3.8) and  0a
hh BC ,

we find    0 a
hc

h
b BB

cb
, from which

(3.10)  
i

a
c

a
ic CHB 

where  a
ic B  are defined by

(3.11)  b
i

a
cb

a
h

j
c

h
ji

a
ic

a
ic BTBBTBB  ~

in U and  a
cH   by

(3.12)    a
h

ij
c

h
ji

h
bc

a
c BCBTBH ~

The  a
cH  are called components of   the mixed

second fundamental tensor H of M with
respect   to the affine normal C in U, H being
of type (1.1).

   We next  differentiate  0ia
i CB  covariantly

along M and use (3.10). Then we obtain
   0 i

c
a
i

a
c CBH  from which

(3.13)  h
c

h
a

a
c

h
c ClBHC  ,

where  
cl  are defined by

(3.14)    h
ij

c
h

ji
h

cc CCBTCl ~

and  h
cC  by

(3.15)  ij
c

h
ji

h
c

h
c CBTCC ~

in U. The  cl  are called components of the third
fundamental tensor l of M with respect to the
affine normal C in U, l being of type (0, 1). The
l gives a linear  connection in the one-dimen-

sional vector bundle 
 

Up
RaaC p



 }/{

over U.

     Finally, differentiating  0i
i
bCB  covariantly

along M and using (3.8),  0a
i

i BC  and

 1i
iCC , we find    0 ic

i
c CCl , from

which

(3.16)  
icceic ClhC   where  

icC  are
defined in U by

(3.17)  
h

j
c

h
jiicic CBTCC ~ .

Equations (3.8) and (3.10) are those of Gauss
for the real hypersurface M and equations
(3.11) and (3.13) are those of Weingarten for
M.

       Consider a vector field  hh xXX  /

tangent to M. Then we have   h
a

ah BXX 
Thus using (3.8), we have

(3.18)     hb
cb

h
a

a
c

h
c CXhBXX  ,

where we have put in U,   h
c

h
c XX 
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ij
c

h
ji XBT~ ,  ba

cb
a

c
a

c XTXX 

Let (f, ξ, θ) be the e almost contact
structure induced in M by the affine normal C
to M in U. The n (2.2) and (2.3) can be written
as

(3.19)       h
b

bih
i BCF ~ ,

(3.20)  h
b

h
a

a
b

i
b

h
i ClBfBF ~

respectively. Applying  
c  to (3.20) and using

 0~~~  h
ij

j
c

h
ic FBF , we obtain

       h
bc

he
bce

h
a

a
bc

h
a

a
cb CCfhBfBfh  

 h
c

h
a

a
c ClBH  ,

where we have used (2.2), (2.3) with  bBX 
(3.16) and (3.17). Thus we obtain

(3.21)  
b

a
c

a
cb

a
bc Hhf   ,

(3.22)     bc
e

bcebc lfh   .

Next, applying 
c to (3.19), we have in a similar

way as above from which

(3.23)  ,a
c

e
c

a
e

a
c lHf  

(3.24)  .e
cee

e
c hH  

Substituting (3.21), (3.22) and (3.23)
into (1.3) and using (3.24), we obtain

(3.25)  )( b
a

c
e
c

a
e

e
c

a
e

a
cb lHffHS 

,)( c
a

b
e
b

a
e

e
b

a
e lHffH 

(3.26)   be
e

cc
e

beed
d

b
e

ccbcb lfhhffhG  

(3.28)   .)( d
b

e
edb

e
ebb fhllQ  

When a hyperdistribution D with
almost hyperbolic Hermitian structure J is
given on a manifold of odd dimension and when
 a

cbS    0, (mod c, b) is satisfied for an almost
para contact structure (f, ξ, θ) associated with
D, the D is said to be torsionless . Thus we
have from (3.25).

Proposition 3.1: For  any real
hypersurface M of an almost hyperbolic
Hermitian manifold the induced hyperdistribu-
tion D of M with almost hyperbolic Hermitian
structure J is always torsionless6-14.

Equations (3.26) imply

Proposition 3.2: For any real hyper-
surface M of a almost hyperbolic Hermitian
manifold, the Levi-tensor G of an almost para
contact structure (f, ξ, θ) induced in M has
components of the form

(3.29)     ed
d

b
e

ccbcb hffhG   (mod c, b)

in U, when an affine normal C to M is given in
a coordinate neighborhood U of M.
Proposition 3.2 implies that  g(X, Y) = g(Y, X),
g (JX, JY) + g(X, Y) = 0
for any vector fields X and Y belonging to the
hyperdistribution D with hyperbolic RAC
Structure J. Equations (3.25) imply

Proposition 3.3: Let (f, ξ, θ) be an
almost para contact structure induced on a real
hypersurface M of an almost hyperbolic
Hermitian  manifold by giving an affine normal
C to M in a coordinate neighborhood U of M.
Then (f, ξ, θ) is normal if and only if

(3.30)  a
b

e
b

a
e

e
b

a
e lHffH     0, (mod θb).
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We take another affine normal  C  to

M in U and assume  C  is given by (2.6).

Denote by   hl ,, and  H  respectively the
induced affine connection, the third
fundamental tensor, the covariant and the
mixed second fundamental tensors of M in U,
which are determined by (3.6), (3.14), (3.9)

and (3.12) in term s of  C .

Then components  HhofhofT
a
bcb

b
ca ,,

loflandHof b  are respectively given by

(3.31) 

 

,log)(

,])([1

,,







b
e

bebb

ae
beb

a
b

a
b

a
b

cbcb
a

cb
a

cb
a
cb

Ahll

AAhlAHH

hhAhTT







where  is a non-vanishing function and
 hh

a
a xBAA  /  is a vector field belonging

to D, both being defined in U. To obtain (3.31),

we have used (2.6),  h
b

h
b BB   and

(3.32)     ,, iii
aa

i
a
i CcCABB 

where
 

.),( 1












 hh
a

i

a
i CB

C

B

Proposition 3.2 and  cbcb hh   appearing in
(3.21) imply the following well known
 Proposition [1, 2, 3, 5]:

Proposition 3.4. Let (f, ξ, θ) and

 ),,( f be two almost para contact structures
induced on a real hypersurface M and assume
that they are related to each other  by (2.7).

Then  cbcb GG   (mod  c, b),  being a

non-vanishing function, where  cbcb GandG
are respectively components of the Levi

tensors of (f, ξ, θ) and  ),,( f .

Proposition 3.4 shows that  the
restriction GD of the Levi tensor G to D is
determined up to a non-vanishing factor. Thus
GD is sometimes called the Levi tensor of the
induced hyperdistribution D with almost
hyperbolic Hermitian structure. When G is of
the maximum rank 2n everywhere in M, the
real hypersurface M is said to be non-
degenerate. By P3.1, for any real hypersurface
M of an almost hyperbolic Hermitian manifold
the hyperdistribution D of M with almost
hyperbolic Hermitian structure is torsionless.
This fact means that any real hypersurface M
admits a pseudo-conformal structure when M
is non-degenerate1,2,5.
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